{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过单因素试验,获得了用于锌铁合金和锡表面共同着黑色膜的常温化学钝化方法,优选出的最佳工艺参数为:40.0~50.0 g/L CuSO4·5H2O,3.0~5.0 g/L NaOH,9.0~10.0 g/L HCOOH,30.0~35.0g/L CrO3,0.1~0.3 g/L HCHO,0.2~0.3 g/L H3PO4,pH值1.5~2.0,钝化温度15~25 ℃,钝化时间8~12min.且采用该钝化液获得的钝化膜油黑发亮,色泽均匀,耐蚀性及耐磨性好,附着力强.该钝化液中采用非银盐发黑剂,污染小,且化学性能稳定,使用寿命长.","authors":[{"authorName":"曾小君","id":"98c473be-6bae-4d80-a636-20db5b3f146a","originalAuthorName":"曾小君"},{"authorName":"徐桦","id":"c5f37486-1292-41dd-85f9-750d77e4ab00","originalAuthorName":"徐桦"},{"authorName":"张国庆","id":"c05db139-a090-4edc-9de4-204031fcf381","originalAuthorName":"张国庆"}],"doi":"10.3969/j.issn.1001-1560.2007.11.010","fpage":"27","id":"d45b682f-0e02-48f3-8c4a-ee299736a654","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"76896aaf-332d-435e-b6d1-8ad215f4562e","keyword":"锌铁合金","originalKeyword":"锌铁合金"},{"id":"99fe6661-a32c-4d1e-950c-bf8673a0f30f","keyword":"锡","originalKeyword":"锡"},{"id":"0e2f0233-833d-4e5b-9258-f30851c152a9","keyword":"黑色钝化","originalKeyword":"黑色钝化"},{"id":"9c457ab1-2054-4e06-acfe-061b75b40295","keyword":"常温","originalKeyword":"常温"}],"language":"zh","publisherId":"clbh200711010","title":"用于锌铁合金和锡表面的常温黑色钝化工艺","volume":"40","year":"2007"},{"abstractinfo":"以纳米二氧化锡、硝酸钴、脲、葡萄糖和十二烷基硫酸钠为原料,通过水热-碳热还原原位制备锂离子电池Sn-Co-C复合负极材料.通过XRD、SEM、EDS和TEM分析表明,原位生成的Sn-Co合金颗粒分布于纳米或微米尺度的碳球和碳纳米棒内部以及微孔碳基体之中.电化学测试表明,在50 mA·g-1电流密度下,Sn-Co-C复合负极材料首次充放电比容量分别为602.9 mAh·g-1和867.1 mAh· g-1,循环100次后其充放电比容量仍分别保持在350.4 mAh·g-1和356.6 mAh·g-1,平均每次放电容量衰减率仅为5.1%.优异的电化学性能主要归因于Sn-Co合金颗粒处于纳米或微米尺度的碳球和碳纳米棒内部以及微孔碳基体之中可以改善其导电性,并可以缓解锂电池充放电过程中产生的体积变化所导致的活性物质脱落,提高循环性能和寿命.","authors":[{"authorName":"曾小君","id":"1a2fce9a-2681-46e4-abce-262a08060bbc","originalAuthorName":"曾小君"},{"authorName":"付任重","id":"d0fdb863-e636-429f-80f0-5266db64e9b5","originalAuthorName":"付任重"},{"authorName":"朱演","id":"fe827c7d-b4d9-40b2-b6a8-570c354dc5b1","originalAuthorName":"朱演"},{"authorName":"吉鹏","id":"7303277a-b30d-4af0-9ef0-aa7cb111fe7e","originalAuthorName":"吉鹏"},{"authorName":"陈会琴","id":"728586d5-79d3-437c-81a1-326615154ab9","originalAuthorName":"陈会琴"},{"authorName":"陈晨","id":"620b7988-2f53-493c-985d-c4aae10d9b80","originalAuthorName":"陈晨"},{"authorName":"徐阳","id":"e9682a6b-2ea1-4e2a-befe-d0d3f86df7be","originalAuthorName":"徐阳"}],"doi":"","fpage":"1","id":"8919f3a9-dacb-43cf-9ac7-1b7e26304930","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6c4e3920-e0f0-4923-8989-e8cb3c21a188","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"c0ab393f-fc8d-4d11-b6cf-af23a2e5de73","keyword":"Sn-Co-C复合材料","originalKeyword":"Sn-Co-C复合材料"},{"id":"f78baccf-7bef-4b84-a7c4-f804d9888e97","keyword":"水热法","originalKeyword":"水热法"},{"id":"35394ea8-f517-44af-a523-9e480c2dc4bb","keyword":"原位碳热还原","originalKeyword":"原位碳热还原"},{"id":"5bc0c13e-fa2e-4a95-a6b2-95523f993b7d","keyword":"负极","originalKeyword":"负极"}],"language":"zh","publisherId":"jsrclxb201510001","title":"水热-碳热还原原位合成锂离子电池Sn-Co-C复合负极材料","volume":"36","year":"2015"},{"abstractinfo":"采用端羟基聚醚腈(HPCE)、甲苯二异氰酸酯(TDI)等为主要原料制备聚醚腈型聚氨酯预聚体,就其制备动力学进行了研究.提出了一种测试聚醚腈型聚氨酯预聚体合成中氨酯化反应和支化反应的反应动力学参数的理论模型,确定了合适的制备工艺.","authors":[{"authorName":"曾小君","id":"e546edb8-eddf-4802-bbab-1b0921a1f6b6","originalAuthorName":"曾小君"},{"authorName":"袁荣鑫","id":"30f9fb4f-3211-4bfe-8894-53603bc70fda","originalAuthorName":"袁荣鑫"}],"doi":"10.3969/j.issn.0253-4312.2008.01.002","fpage":"5","id":"001c7b98-7792-4206-8874-e17add7e1837","issue":"1","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"27683327-9391-4c5f-9706-78ee4421245b","keyword":"聚氨酯预聚体","originalKeyword":"聚氨酯预聚体"},{"id":"65f5bb4b-8bd4-4336-9d8b-1d7500071a59","keyword":"反应动力学","originalKeyword":"反应动力学"},{"id":"456c2340-750b-4cfb-b50a-f9c82597533f","keyword":"支化反应","originalKeyword":"支化反应"},{"id":"ca939f8c-faa3-4502-be31-5c870ca8499f","keyword":"羟基分析","originalKeyword":"羟基分析"},{"id":"8ca68ada-19a5-4f5c-9c0a-8736170a2781","keyword":"聚醚腈","originalKeyword":"聚醚腈"}],"language":"zh","publisherId":"tlgy200801002","title":"聚醚腈型聚氨酯预聚体合成反应动力学研究","volume":"38","year":"2008"},{"abstractinfo":"成功地合成了带烷端基的酚酞聚芳醚腈,测定其1H-NMR谱,根据链中芳环质子共振峰与链端基质子共振峰积分强度比求解分子量,与聚合物特性粘度关联,确定了酚酞聚芳醚腈在四氢呋喃溶剂中,60 ℃的Mark-Houwink常数K=1.64×10-6,α=0.918,建立了其在四氢呋喃溶剂中的特性粘度与数均分子量的关系:[η]=1.64×10-60.918n.","authors":[{"authorName":"曾小君","id":"cc17ba15-d2b9-4db7-a6bc-f41f917803ba","originalAuthorName":"曾小君"},{"authorName":"徐刚","id":"07b93d85-2d62-4790-b671-d7789ecfc1fe","originalAuthorName":"徐刚"},{"authorName":"廖维林","id":"e5d031d3-4841-4bcb-b7c3-d368e1cb65d6","originalAuthorName":"廖维林"},{"authorName":"王生生","id":"4a23e49d-d418-4d72-8d69-897be123c46c","originalAuthorName":"王生生"}],"doi":"","fpage":"160","id":"395a4c57-6ae3-43fb-ace2-3129f6fd8c6a","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6463ca75-a7c4-4465-bd8d-4eea9037c6fe","keyword":"核磁共振法","originalKeyword":"核磁共振法"},{"id":"5e8f9867-6572-40ca-bb5d-433de21669ad","keyword":"酚酞聚芳醚腈","originalKeyword":"酚酞聚芳醚腈"},{"id":"3af37154-bbbf-47e9-b5db-2913d1ac8fa6","keyword":"分子量测定","originalKeyword":"分子量测定"}],"language":"zh","publisherId":"gfzclkxygc200104042","title":"核磁共振法测定酚酞聚芳醚腈的分子量","volume":"17","year":"2001"},{"abstractinfo":"采用聚酯二醇(JW2503),甲苯二异氰酸酯(TDI),二羟甲基丙酸(DMPA)为基本原料,用丙酮法合成了稳定的聚酯型阴离子水性聚氨酯乳液.讨论了NCO/OH的摩尔比、反应温度、反应时间、催化剂用量等因素对水性聚氨酯乳液性能的影响.实验结果表明,当初聚NCO/OH=2.3,总体NCO/OH=1.1、初聚反应温度为(65±1)℃、扩链反应温度为(82±1)℃、中和反应温度为30℃~40℃、初聚反应时间为2.0h、扩链反应时间为1.5h、催化剂用量为0.03%时,合成的聚酯型阴离子水性聚氨酯乳液具有较好的贮存稳定性,且涂膜的耐水性和机械性能良好.","authors":[{"authorName":"曾小君","id":"4e33f2fa-77c0-4460-a188-b63f1ab9f971","originalAuthorName":"曾小君"}],"doi":"10.3969/j.issn.1671-5381.2006.02.003","fpage":"7","id":"3e92d96c-fe65-4159-9784-cf0d1115b6b0","issue":"2","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"1ab256b3-968d-4af2-884f-a6ffd802dfba","keyword":"聚酯","originalKeyword":"聚酯"},{"id":"1749df1b-fc46-4b0c-9898-a736edc90642","keyword":"阴离子","originalKeyword":"阴离子"},{"id":"116d2d14-5812-4175-87ab-57092b33da2f","keyword":"水性聚氨酯","originalKeyword":"水性聚氨酯"},{"id":"c7452cea-521e-47f2-b044-b684d70c49c1","keyword":"合成","originalKeyword":"合成"},{"id":"34d9194b-75aa-469f-a2eb-3968e2d856bd","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"hccllhyyy200602003","title":"聚酯型阴离子水性聚氨酯乳液的合成及性能研究","volume":"35","year":"2006"},{"abstractinfo":"利用广角X射线衍射(WAXD)方法和示差扫描量热法(DSC)研究了不同热处理温度时聚芳醚腈(PCE)的微晶尺寸、结晶度及热性能的变化.结果表明,淬火样品在熔融温度以下,不同的热处理对微晶尺寸、结晶度、Tg及Tm都有不同程度的影响,但都随Th的升高,其Dhkl、Xc和Tm也升高.实验同时还发现,结晶样品与原粉试样的结晶度比较均下降,说明PCE聚合物在熔融过程中出现了交联现象,因而降低了结晶度.","authors":[{"authorName":"曾小君","id":"acfa2bec-ddce-4939-866e-ba8ea4d7217f","originalAuthorName":"曾小君"},{"authorName":"章家立","id":"508fc581-eb1a-4562-bea3-97898517b518","originalAuthorName":"章家立"},{"authorName":"徐刚","id":"47a7a731-f452-465a-ba65-62c37485f7c1","originalAuthorName":"徐刚"},{"authorName":"廖维林","id":"d2fcbcc8-505f-4032-915c-8a7811fb5a19","originalAuthorName":"廖维林"},{"authorName":"王甡","id":"338c5cb5-fbdf-4748-ba50-3cab6326f97b","originalAuthorName":"王甡"}],"doi":"","fpage":"124","id":"468c5b90-4540-4867-a1b7-bbab5a061182","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"01e3256d-2557-42f1-8ccb-63184eba1c53","keyword":"聚芳醚腈","originalKeyword":"聚芳醚腈"},{"id":"bde0c66c-4d96-4fec-b6c5-5a0f7f740e73","keyword":"微晶尺寸","originalKeyword":"微晶尺寸"},{"id":"4c3d053e-36a6-4409-b2f0-3c4ea0d1de9a","keyword":"结晶度","originalKeyword":"结晶度"},{"id":"bf671ac0-e737-4caa-b210-f19ea8b208ba","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"gfzclkxygc200006035","title":"热处理对刚性聚芳醚腈的结晶行为及熔融的影响","volume":"16","year":"2000"},{"abstractinfo":"联用窄分布环氧端基聚芳醚腈(E-PCE)试样的[η]和GPC谱图数据,确定了环氧端基聚芳醚腈在四氢呋喃溶剂中,30 ℃下的Mark-Houwink常数为K=5.52×10-6,α=1.3226,就分子量对性能的影响进行了讨论.","authors":[{"authorName":"廖维林","id":"620912d8-79bb-46a0-a716-9126465d0960","originalAuthorName":"廖维林"},{"authorName":"徐刚","id":"c25b6d50-267c-44ba-8c57-f27215a088f6","originalAuthorName":"徐刚"},{"authorName":"曾小君","id":"265abec3-e954-452b-97d9-98e9707dc003","originalAuthorName":"曾小君"},{"authorName":"崔国娣","id":"7047ddf4-870f-4136-bd4c-2ec25a2b6cf7","originalAuthorName":"崔国娣"},{"authorName":"王甡","id":"8da4b38b-cab0-479d-ae9a-8533e17a7819","originalAuthorName":"王甡"}],"doi":"","fpage":"167","id":"786c494e-3f89-418a-8ab2-e50a583d2a39","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2a483be0-b4f1-4dbd-b4ca-7f6c1ed039ad","keyword":"环氧端基","originalKeyword":"环氧端基"},{"id":"fdfd1f3c-6017-4bb0-bf6a-ab42ea9208ec","keyword":"聚芳醚腈","originalKeyword":"聚芳醚腈"},{"id":"58085a23-c21d-49fe-86ff-9aa2cd41fd37","keyword":"凝胶渗透色谱","originalKeyword":"凝胶渗透色谱"},{"id":"4d846619-fc94-453d-8e0c-d945ca426205","keyword":"分子量测定","originalKeyword":"分子量测定"}],"language":"zh","publisherId":"gfzclkxygc199901048","title":"GPC测定环氧端基聚芳醚腈(E-PCE)的分子量","volume":"","year":"1999"},{"abstractinfo":"采用甲苯-2,4-二异氰酸酯(TDI)、蓖麻油和聚乙二醇(PEG)等为主要原料,通过逐步聚合得到一种新型非离子水性聚氨酯表面活性剂,并利用红外光谱对其结构进行了表征.实验结果表明,当蓖麻油∶TDI∶PEG-4000=1∶9∶11时,采用依次加入蓖麻油、TDI、PEG的加料方式,能够合成得到综合性能较好的非离子水性聚氨酯表面活性剂.对该表面活性剂在水相中的表面活性进行了测试,结果表明,所制得的非离子水性聚氨酯表面活性剂的临界胶束浓度约为22 g/L,水溶液的最低表面张力可达53 mN/m.","authors":[{"authorName":"曾小君","id":"548805ff-cff3-4e28-904e-8253da09d014","originalAuthorName":"曾小君"},{"authorName":"郁燕萍","id":"16717611-a844-4236-9695-0073d624719e","originalAuthorName":"郁燕萍"}],"doi":"","fpage":"129","id":"a17e5f20-96b4-4cec-82df-ad0e4e2b70d8","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"bafb14ae-7fef-4780-90f6-8219daf57ada","keyword":"水性聚氨酯","originalKeyword":"水性聚氨酯"},{"id":"ccbef1ec-1224-4065-88f0-3b7ee25db921","keyword":"非离子型表面活性剂","originalKeyword":"非离子型表面活性剂"},{"id":"05a6bf1f-fdcc-4ddf-94e5-36b2b353e707","keyword":"蓖麻油","originalKeyword":"蓖麻油"},{"id":"15beb4e9-45cd-46af-8bcf-dbf9e717e481","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"},{"id":"52674c3b-4cdc-42a6-a49e-58bf81024a43","keyword":"甲苯-2,4-二异氰酸酯","originalKeyword":"甲苯-2,4-二异氰酸酯"}],"language":"zh","publisherId":"gfzclkxygc200803033","title":"新型非离子水性聚氨酯表面活性剂的制备及性能","volume":"24","year":"2008"},{"abstractinfo":"采用3,4,9,10-二萘嵌苯四酸二酐(PTCTA)为原料,经高温自由基聚合、气相沉积、脱氢、石墨化工艺制得锂离子电池用聚萘(PPN)负极材料.通过X射线衍射、扫描电子显微镜、激光显微拉曼光谱等检测技术对PPN负极材料的结构和表面形貌进行了分析与表征,研究了PPN作为锂离子电池负极材料的电化学行为.结果表明,PPN负极材料具有类似石墨的多片层结构,电化学测试表明,PPN负极材料具有良好的循环稳定性和倍率性能;在50 mA/g电流密度下,PPN负极材料首次放电比容量为368.4 mAh/g,经过200圈循环之后,PPN负极材料的放电比容量仍保持在300.3mAh/g.结果显示PPN适用于做锂离子电池负极材料.","authors":[{"authorName":"曾小君","id":"a22a9754-d30d-416c-b74a-49141751ffee","originalAuthorName":"曾小君"},{"authorName":"徐阳","id":"5982bf3f-5f68-4576-85b6-bcc072d0573f","originalAuthorName":"徐阳"},{"authorName":"吉鹏","id":"47e779b6-fd9e-4892-8639-2326f123739c","originalAuthorName":"吉鹏"},{"authorName":"陈会琴","id":"fbd2054d-763b-4371-9675-afa1cb53d8b0","originalAuthorName":"陈会琴"},{"authorName":"王航航","id":"caaf11cd-fcb3-49b8-8f53-343da760709f","originalAuthorName":"王航航"}],"doi":"","fpage":"179","id":"e861c78c-754a-4b7a-b982-6e691a064a02","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2b0c866e-b28b-4016-9be8-f26971dbbebe","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"9f4787f4-43ff-4a99-8aac-bce695ebde32","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"17533d21-a35f-46b6-9bfe-724896a805e8","keyword":"聚萘","originalKeyword":"聚萘"},{"id":"5b755cb6-22c7-4505-8930-e64b514be086","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"gfzclkxygc201410038","title":"锂离子电池用聚萘负极材料的制备及电化学性能","volume":"30","year":"2014"},{"abstractinfo":"研制了一种水基印刷线路板油墨清洗剂.研究了清洗剂中的氢氧化钠、磷酸三钠、三聚磷酸钠、硅酸钠用量对油墨去除率的影响.采用超声辅助清洗工艺,探讨了清洗温度和清洗时间对不同类型印刷线路板油墨去除效果的影响.油墨清洗剂的较优组成为:氢氧化钠6%,磷酸三钠2%,三聚磷酸钠2%,硅酸钠1%,氯化钠2%,亚硝酸钠1%,表面活性剂AES 1%,表面活性剂K12 1%,表面活性剂SAS-60 1%.该油墨清洗剂具有良好的清洗能力,油墨去除率高.在清洗温度80~90℃、清洗剂中活性物质量分数为17%的条件下,对普通型线路板、烘烤型线路板分别清洗5~8 min、45~50 min,油墨去除率均可达100%.","authors":[{"authorName":"曾小君","id":"0c9855cc-472c-4139-a96b-c60fb0a8f30f","originalAuthorName":"曾小君"},{"authorName":"陈烨","id":"5229c35f-694c-43af-883e-76bd4ee297d0","originalAuthorName":"陈烨"},{"authorName":"金萍","id":"3e291eaa-24aa-4b94-bf10-9a587b8a9727","originalAuthorName":"金萍"}],"doi":"","fpage":"37","id":"3e1065d4-4f42-44a6-a187-cb8e7579f21d","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"df88e882-fb1e-4ae1-b96a-cfcc864ced34","keyword":"印刷线路板","originalKeyword":"印刷线路板"},{"id":"3bf704b1-6516-4358-b2bb-6ce1ea4c3daa","keyword":"油墨","originalKeyword":"油墨"},{"id":"a791fbf2-61ac-4f07-ad81-596e8dbfe6d3","keyword":"水基清洗剂","originalKeyword":"水基清洗剂"},{"id":"6c251fa3-0b76-404e-9b60-58ab50a66d21","keyword":"复配","originalKeyword":"复配"},{"id":"c784785d-a58d-4def-a6eb-4bb05e4c00dd","keyword":"超声辅助","originalKeyword":"超声辅助"}],"language":"zh","publisherId":"ddyts201303010","title":"水基印刷线路板油墨清洗剂的研制","volume":"32","year":"2013"}],"totalpage":587,"totalrecord":5865}