蒙飚
,
刘岽
钢铁
doi:10.7513/j.issn.1004-7638.2014.04.007
以16种合金元素含量为输入层节点参数,以充放电循环性能为输出层节点参数,构建了16×48×1三层神经网络预测模型,并对预测能力进行了试验验证,同时对模型选出的合金进行了化学成分、显微组织、物相组成和充放电循环性能的测试与分析.结果表明,该神经网络模型的预测精度较高,V3TiNi0.56-0.1Sc合金具有最佳的充放电循环性能;该合金由V基固溶体相、TiNi相和Ti2Ni相组成,经过15次充放电循环后放电容量保持率高达82%,较V3TiNi0.56合金提高了80%.
关键词:
钒基储氢合金
,
充放电循环性能
,
合金元素
,
神经网络
,
预测模型