{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用原位扫描隧道显微镜研究了Si(111)-7×7表面蒸镀纳米银团簇的迁移行为以及氧气氛的促进作用. 在覆盖度较低的情况下,蒸镀的银原子在Si(111)-7×7表面形成具有规整三角形结构单元的有序银团簇,它们主要占据在Si(111)-7×7表面有位错的半单胞内. 在氧的存在下,形成的结构单元在硅表面发生迁移,并逐渐团聚成无明显结构特征的大粒子. 原位观察结果表明,在连续扫描过程中,团聚后的大粒子在氧覆盖的硅表面也会发生迁移,最后稳定在硅表面原子氧吸附位周围. 进一步的观察发现,硅表面银团簇的存在对随后氧的吸附状态具有明显的影响. 这些结果为解释纳米银团簇在SiO2表面具有独特的催化性能提供了依据. ","authors":[{"authorName":"焦健","id":"c6a41add-0b2c-46df-be3f-88999d0e9666","originalAuthorName":"焦健"},{"authorName":"潘明虎","id":"2bd10059-07fa-49e2-90fe-8899be0b30c9","originalAuthorName":"潘明虎"},{"authorName":"","id":"49bbde8b-312a-4636-8dd5-e629aacf2cb2","originalAuthorName":"薛其坤"},{"authorName":"包信和","id":"7772bee7-db29-4c13-a32b-88a96c84c2f8","originalAuthorName":"包信和"}],"doi":"","fpage":"433","id":"2d56eb5a-c6b0-4041-9c9b-00a421c68d4b","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"400537d1-88a8-4db1-8fac-e0571f69a059","keyword":"扫描隧道显微镜","originalKeyword":"扫描隧道显微镜"},{"id":"1e8b14f1-7746-4c5e-9e81-454f8840050e","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"9330f1dc-4cbd-4264-9a39-85c58293bdd3","keyword":"银团簇","originalKeyword":"银团簇"},{"id":"e323987a-385c-439b-bf05-5cc405337a2a","keyword":"迁移","originalKeyword":"迁移"},{"id":"2ef0873b-2bac-441c-9007-1dedceead79f","keyword":"吸附氧","originalKeyword":"吸附氧"}],"language":"zh","publisherId":"cuihuaxb200306009","title":"硅表面纳米银团簇的氧助迁移行为","volume":"24","year":"2003"},{"abstractinfo":"基于纳米复合Ti-Si-N薄膜硬度对界面相微结构及微尺度变化极为敏感的实验事实,\n定量表征了薄膜的硬度与氧杂质含量的关系. 结果表明, 与高纯度薄膜40-55 GPa高硬度比较,1%-1.5%的氧杂质含量导致薄膜的硬度下降到30 GPa左右.根据纳米晶界面原子模型和实验结果,氧杂质与纳米尺度界面交互作用所引发的微尺度缺陷是硬度下降的诱因,晶界面的氧杂质密度是薄膜高硬度损失程度的决定因素,单个纳米晶周围的氧杂质覆盖度达到10个原子以上时, 薄膜的硬度只能达到30 GPa.","authors":[{"authorName":"马大衍","id":"91af8e6f-c2dc-4b54-9275-34d04fcba04f","originalAuthorName":"马大衍"},{"authorName":"马胜利","id":"3a2aa46c-dbad-4aad-b61c-04c93f3be14a","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"a0d4832c-3e0f-434a-aaed-8903999afea6","originalAuthorName":"徐可为"},{"authorName":"","id":"e005f042-a815-414c-9ed3-141d9f7330aa","originalAuthorName":"薛其坤"},{"authorName":"S.Veprek","id":"02e9395c-87c3-42f7-8862-4349d638898e","originalAuthorName":"S.Veprek"}],"categoryName":"|","doi":"","fpage":"287","id":"c2c3c480-db7d-44e2-b99e-b7d0c8817621","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"be2bfa8e-987b-4a5b-8b4d-70d358318b8c","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"e897c9c8-7b6d-4d4d-9e79-9d2bc0d84109","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_2008_3_2","title":"氧杂质致Ti-Si-N薄膜高硬度损失的机理","volume":"22","year":"2008"},{"abstractinfo":"基于纳米复合Ti-Si-N薄膜硬度对界面相微结构及微尺度变化极为敏感的实验事实,定量表征了薄膜的硬度与氧杂质含量的关系.结果表明,与高纯度薄膜40-55 GPa高硬度比较,1%-1.5%的氧杂质含量导致薄膜的硬度下降到30 GPa左右.根据纳米晶界面原子模型和实验结果,氧杂质与纳米尺度界面交互作用所引发的微尺度缺陷是硬度下降的诱因,晶界面的氧杂质密度是薄膜高硬度损失程度的决定因素,单个纳米晶周围的氧杂质覆盖度达到10个原子以上时,薄膜的硬度只能达到30 GPa.","authors":[{"authorName":"马大衍","id":"35d02b95-8efe-4973-81a5-e99f311bd1fd","originalAuthorName":"马大衍"},{"authorName":"马胜利","id":"d698e0fb-1769-4c58-8d8c-b881d065f59f","originalAuthorName":"马胜利"},{"authorName":"徐可为","id":"b56f8f63-62f3-4e83-bcfa-53f049587368","originalAuthorName":"徐可为"},{"authorName":"","id":"ab13f99f-e223-4aec-bfda-daba99bd5642","originalAuthorName":"薛其坤"},{"authorName":"S. Veprek","id":"b68f4a50-dd4f-4230-a269-46439060a3d2","originalAuthorName":"S. Veprek"}],"doi":"10.3321/j.issn:1005-3093.2008.03.012","fpage":"287","id":"9e43a4ce-38ec-45ae-8217-0621de431cd5","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"d4a7437d-a436-4373-9f9b-2851cb967152","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"00caaab7-0490-4750-973a-a78a60964559","keyword":"纳米复合薄膜","originalKeyword":"纳米复合薄膜"},{"id":"a032506e-ec99-4245-995b-94051b9c22c5","keyword":"硬度","originalKeyword":"硬度"},{"id":"4d9737f7-3c7a-46b6-94de-3be33cde3330","keyword":"氧杂质","originalKeyword":"氧杂质"}],"language":"zh","publisherId":"clyjxb200803012","title":"氧杂质致Ti-Si-N薄膜高硬度损失的机理","volume":"22","year":"2008"},{"abstractinfo":"简要综述自从2005年前后发展起来的一类新的材料体系-“拓扑”量子材料,它包含拓扑绝缘体、拓扑晶体绝缘体、拓扑超导体和拓扑半金属等.这类材料中较强的自旋轨道耦合作用导致了包括量子反常霍尔效应在内的丰富多彩的量子现象,有可能对未来低能耗电子学、拓扑量子计算和清洁能源等技术的发展具有重大的推动作用.","authors":[{"authorName":"何珂","id":"9b7f2d9f-72d2-4ba8-b298-db8ccd46c20b","originalAuthorName":"何珂"},{"authorName":"","id":"ea8300a8-dcf1-4394-8407-db6e4118e3b9","originalAuthorName":"薛其坤"}],"doi":"","fpage":"161","id":"5314812b-ee61-46c0-82b7-ea86149fe458","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"49529ecf-a387-4d45-965f-c12a695df7be","keyword":"综述","originalKeyword":"综述"},{"id":"896d62d4-916b-4b87-ba38-406ff6ec7ced","keyword":"拓扑绝缘体","originalKeyword":"拓扑绝缘体"},{"id":"3f382545-5532-45f1-9998-843a56c2da9c","keyword":"量子霍尔效应","originalKeyword":"量子霍尔效应"},{"id":"44b39b14-52df-4145-8ac7-b063bdde2193","keyword":"量子反常霍尔效应","originalKeyword":"量子反常霍尔效应"}],"language":"zh","publisherId":"clyjxb201503001","title":"拓扑量子材料与量子反常霍尔效应","volume":"29","year":"2015"},{"abstractinfo":"近年来,光电子谱被广泛应用于薄膜中量子阱态的研究.为解释薄膜中分立的量子阱态和薄膜的光电子谱间的关系,发展了一些理论模型.介绍了近自由电子模型、相位积累模型和电子干涉模型等关于薄膜中量子阱态的理论模型,并用它们解释了量子阱态在光电子谱中峰位和线宽.线宽由准粒子寿命的倒数Г以及电子在表面和界面反射系数的和R决定,电子波矢К以及电子在表面和界面相位移之和Ф决定了峰的位置.","authors":[{"authorName":"王得勇","id":"0e254688-eec2-49a5-9450-e598f42dda04","originalAuthorName":"王得勇"},{"authorName":"刘杰","id":"b7f8a7fe-39b8-4c17-84ee-724c649a7b29","originalAuthorName":"刘杰"},{"authorName":"贾金锋","id":"528373a7-3d29-4f4f-ae60-cf2d898a47a7","originalAuthorName":"贾金锋"},{"authorName":"刘洪","id":"39ba5984-6021-4dd8-99f1-8a68f749cad9","originalAuthorName":"刘洪"},{"authorName":"","id":"0b43077c-9be0-41d7-b87c-534ae6ea92ec","originalAuthorName":"薛其坤"}],"doi":"10.3969/j.issn.1007-5461.2004.04.028","fpage":"532","id":"3c4ed810-265a-41f3-8e98-8035a1bee908","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"7451d6f5-2971-49be-b007-131d447e53a7","keyword":"光电子学","originalKeyword":"光电子学"},{"id":"d66a5848-44da-4110-811d-c26572e12125","keyword":"量子阱态","originalKeyword":"量子阱态"},{"id":"db21600b-b86e-4389-b7d2-02d5556c2bc7","keyword":"近自由电子模型","originalKeyword":"近自由电子模型"},{"id":"48531753-c364-45e2-9029-d3e244aedc9f","keyword":"相位积累模型","originalKeyword":"相位积累模型"},{"id":"f06f7f8f-3a2c-44a1-91a1-8d084b2c2930","keyword":"电子干涉模型","originalKeyword":"电子干涉模型"},{"id":"a8bbeca3-c5fe-49b2-9cd3-b34d26cd51bb","keyword":"光电子谱","originalKeyword":"光电子谱"}],"language":"zh","publisherId":"lzdzxb200404028","title":"量子阱态光电子谱研究的理论模型","volume":"21","year":"2004"},{"abstractinfo":"为查明新疆巴里-伊吾盆地地下水水化学特征及其成因,采用数理统计、Piper三线图、Gibbs图、离子比例系数等方法对研究区2011年9月的75组地下水水样测试结果进行分析.研究结果表明,潜水以HCO3和SO4型水为主,承压水以SO4型水为主,两者都是矿化度中等、硬度中等的弱碱性水;Gibbs图表明,研究区潜水水化学成分主要受蒸发浓缩和岩石风化双重作用的影响,承压水补给水源的水化学成分主要受蒸发浓缩作用影响;离子比例系数法及饱和指数表明潜水和承压水中离子主要来自岩盐、硫酸盐、硅酸盐的风化溶解.此外,(Na+-Cl-)与(Ca2+ +Mg2+)-(SO42-+HCO3-)之间的比值关系表明阳离子交换作用也是地下水中化学组分形成的重要作用之一.","authors":[{"authorName":"栾风娇","id":"3363f2cd-ae16-4697-85c9-998b299522f7","originalAuthorName":"栾风娇"},{"authorName":"周金龙","id":"57475a73-90ad-44f1-bcfa-796451d74198","originalAuthorName":"周金龙"},{"authorName":"贾瑞亮","id":"4c462cd0-59ad-4c96-abdb-3986e0185772","originalAuthorName":"贾瑞亮"},{"authorName":"陆成新","id":"988248b4-8a3c-4cd0-a252-3df08bc2c8dd","originalAuthorName":"陆成新"},{"authorName":"白铭","id":"a06615be-b105-47d3-8433-519c2ead4310","originalAuthorName":"白铭"},{"authorName":"梁红涛","id":"d899a91a-8508-485d-b048-b2830f7b8442","originalAuthorName":"梁红涛"}],"doi":"10.7524/j.issn.0254-6108.2017.02.2016062001","fpage":"380","id":"d62db6b0-f2dc-49fe-8d40-4db5809a5ab5","issue":"2","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"63943dc7-e79a-402d-b85a-6b4fa29655fa","keyword":"水化学特征","originalKeyword":"水化学特征"},{"id":"67ed02e6-a2da-40a8-97c6-4ea4946311e9","keyword":"Gibbs图","originalKeyword":"Gibbs图"},{"id":"5cb17df2-c08b-4dae-939d-da386f2aee6a","keyword":"离子比例系数法","originalKeyword":"离子比例系数法"},{"id":"74c747c0-719e-40bf-9301-d4f68760f417","keyword":"阳离子交换","originalKeyword":"阳离子交换"},{"id":"fc1617e7-8914-48ba-b6b4-3d418e6e9b90","keyword":"饱和指数","originalKeyword":"饱和指数"},{"id":"90fabf31-06f0-4ec0-bfff-142b54702221","keyword":"新疆巴里-伊吾盆地","originalKeyword":"新疆巴里坤-伊吾盆地"}],"language":"zh","publisherId":"hjhx201702021","title":"新疆巴里-伊吾盆地地下水水化学特征及成因","volume":"36","year":"2017"},{"abstractinfo":"FeSe及其相关化合物的高温超导性引起了凝聚态物理研究人员的广泛关注。在所有铁基超导体中, FeSe的成分和晶体结构最为简单,只存在铁基超导体最基本的结构单元FeSe层。FeSe超导体具有特殊的电子结构和物理特性,是铁基高温超导机制研究的理想平台。2012年,组在SrTiO3(STO)衬底表面采用分子束外延(MBE)法生长了单层FeSe薄膜,发现该体系的超导转变温度(TC )有接近80 K的迹象,引起人们的广泛关注。先简要地介绍了FeSe晶体,FeSe/石墨烯薄膜的超导特性,再详细介绍了 FeSe/SrTiO3高温超导薄膜的输运性质、超导特性、电子结构以及可能影响单层FeSe/SrTiO3薄膜高温超导的几个因素。","authors":[{"authorName":"方运","id":"3df11f01-b468-441e-9007-255ef99f990a","originalAuthorName":"方运"},{"authorName":"谭世勇","id":"b7ef644d-99da-4e32-9eb6-499f10b5dfdc","originalAuthorName":"谭世勇"},{"authorName":"赖新春","id":"af943bc2-46b0-4b34-a1b7-12abbda6b50d","originalAuthorName":"赖新春"}],"doi":"10.11896/j.issn.1005-023X.2016.017.004","fpage":"26","id":"98449c6b-e27e-4929-8f32-4419b8e32c61","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"49da3fe9-d2ba-4678-843f-1bad038c9f95","keyword":"铁基超导体","originalKeyword":"铁基超导体"},{"id":"9a7c5467-62ac-4541-9d1b-ce3568960eca","keyword":"FeSe薄膜","originalKeyword":"FeSe薄膜"},{"id":"50ac6964-7a06-465e-80b2-b62bd4fa4970","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"8c13bb91-0770-4830-8781-bffe306f3fa3","keyword":"输运性质","originalKeyword":"输运性质"}],"language":"zh","publisherId":"cldb201617004","title":"FeSe超导薄膜的研究进展","volume":"30","year":"2016"},{"abstractinfo":"通过对氯化橡胶及其涂料的性能和应用特点进行分析,阐明了氯化橡胶及其涂料具有广阔的市场发展前景,并对今后的发展提出了建议.","authors":[{"authorName":"佟丽萍","id":"d92d6059-a597-4f0e-b076-48de13d81ff8","originalAuthorName":"佟丽萍"},{"authorName":"李健","id":"5ff7415c-4bef-473e-a8e1-94d882765b10","originalAuthorName":"李健"},{"authorName":"孙亚君","id":"d287279f-c00d-4a6d-8e37-7daa4997aa63","originalAuthorName":"孙亚君"}],"doi":"10.3969/j.issn.0253-4312.2003.04.014","fpage":"39","id":"86c68640-789d-4447-a044-acac05d6dbc1","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"b99b0b74-4703-4cf2-a9de-de517074b3f0","keyword":"氯化橡胶","originalKeyword":"氯化橡胶"},{"id":"d3c2b55e-b71a-4401-89c2-ec5726c8af71","keyword":"氯化橡胶涂料","originalKeyword":"氯化橡胶涂料"},{"id":"02f87e0e-c60c-47e8-bdd8-9d358aa985ae","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"tlgy200304014","title":"氯化橡胶胆识涂料的现状与发展","volume":"33","year":"2003"},{"abstractinfo":"应用铁电体极化反转的Orihara-Ishibashi理论,讨论了圆形铁电薄膜和球形铁电体的开关电流以及开关时间对系统尺寸的依赖性.数值计算表明,不论是二维还是三维铁电系统,铁电畴反转过程中产生的开关电流都随系统尺寸减少而下降,开关时间随系统尺寸减少而缩短.","authors":[{"authorName":"周青春","id":"a9f64515-946d-4edb-829c-d57499982d71","originalAuthorName":"周青春"},{"authorName":"徐荣青","id":"64218e43-8d02-4174-b42a-39d593d842b9","originalAuthorName":"徐荣青"},{"authorName":"李巧改","id":"fd50a48e-29d7-4706-90d0-4bbf22f2190a","originalAuthorName":"李巧改"},{"authorName":"张秀荣","id":"4d8606c1-bddc-4e09-ab58-66f126d13fb5","originalAuthorName":"张秀荣"}],"doi":"10.3969/j.issn.1673-2812.2002.02.026","fpage":"242","id":"21cd4828-ccbd-4da1-adbb-763af69c9b67","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b940860c-ddb9-4f11-a01d-c7d943c5cd2c","keyword":"铁电体","originalKeyword":"铁电体"},{"id":"24c7bcc3-405c-4f25-a4ad-97afcbfc7ba3","keyword":"铁电畴","originalKeyword":"铁电畴"},{"id":"cf0c4db6-470f-4778-b148-f62082894fdb","keyword":"开关特性","originalKeyword":"开关特性"},{"id":"36a59122-630d-4cc1-97cc-d5a1e75d4d63","keyword":"尺寸","originalKeyword":"尺寸"}],"language":"zh","publisherId":"clkxygc200202026","title":"铁电体尺寸对开关特性的影响","volume":"20","year":"2002"},{"abstractinfo":"铅合金由于在硫酸体系中稳定性好而广泛应用于湿法冶金电沉积工序。铅合金的耐腐蚀性能不仅影响生产成本,还会影响阴极产品质量,因此耐腐蚀性能是评价铅合金优劣的关键因素。简要综述了铅合金的晶粒尺寸,二次相形貌及分布和轧制对腐蚀行为的影响。总结了具有理想耐腐蚀性能的铅合金的微观结构的特征,并对铅合金晶界工程和微区腐蚀行为研究提出了展望。","authors":[{"authorName":"李劼","id":"4b5eb207-1970-45b5-8f27-3002eb959a73","originalAuthorName":"李劼"},{"authorName":"钟晓聪","id":"ac7af1d2-fc07-4fe7-ad0e-598e7437a5fa","originalAuthorName":"钟晓聪"},{"authorName":"蒋良兴","id":"f47f55c1-fddd-4c19-ac54-424b830310a3","originalAuthorName":"蒋良兴"},{"authorName":"吕晓军","id":"15a9391f-fdc1-45e1-b1cf-9bd9851c6faf","originalAuthorName":"吕晓军"},{"authorName":"刘业翔","id":"fb9034e6-c9da-4ad5-ae75-0e30cbc0740d","originalAuthorName":"刘业翔"}],"doi":"10.3969/j.issn.1001-9731.2015.05.005","fpage":"5026","id":"a186892b-04b4-4d34-a552-9e961bdbda47","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7e594c12-2745-4322-ade3-25ab7cd7001e","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"5d594b40-37e5-406c-928e-852933f0208d","keyword":"偏聚","originalKeyword":"偏聚"},{"id":"9651b001-a68b-4384-a74f-0f3c92342ecb","keyword":"共晶组织","originalKeyword":"共晶组织"},{"id":"7b78357e-6e4f-4455-a474-159f8a45adcb","keyword":"枝晶","originalKeyword":"枝晶"},{"id":"5c1981c6-1151-42ac-815b-4944d56f7068","keyword":"轧制","originalKeyword":"轧制"}],"language":"zh","publisherId":"gncl201505005","title":"铅合金微观结构对腐蚀行为的影响?","volume":"","year":"2015"}],"totalpage":5035,"totalrecord":50346}