{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以ZnO及WO3为前驱反应物,制备了一系列不同ZnWO4含量的ZnWO4-ZnO复合光催化剂.利用X射线衍射、扫描电子显微镜及X射线能谱仪等手段对催化剂进行表征,并以紫外光为光源,罗丹明B为模拟污染物,评价催化剂的活性.结果表明,热处理温度及ZnWO4与ZnO摩尔比对催化剂光催化降解罗丹明B的活性影响显著.当复合4mol%ZnWO4,并于850 ℃煅烧所制得的ZnWO4-ZnO催化剂活性最高,比纯ZnO高出25%.这是因为ZnWO4的复合可抑制ZnO晶粒长大,提高光生电子与空穴的分离效率,进而改善其光催化活性.","authors":[{"authorName":"郝艳艳","id":"9328a150-51f7-4bb3-b430-8a9758fac1da","originalAuthorName":"郝艳艳"},{"authorName":"张影","id":"bdc2f842-5140-4d80-8008-37646fe3c170","originalAuthorName":"张影"},{"authorName":"赵琳","id":"b3a850a6-991a-4c5a-8120-57c520560860","originalAuthorName":"赵琳"},{"authorName":"阎松","id":"09ad9fa2-5119-4ac5-92b6-a35ad977ebd3","originalAuthorName":"阎松"}],"doi":"","fpage":"457","id":"2b238c70-f6a0-4b2a-a157-96ac90cdc59e","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e66a55c6-0703-4ad4-8b3d-9c9ef1f7e9b7","keyword":"ZnWO4-ZnO","originalKeyword":"ZnWO4-ZnO"},{"id":"ef89dfe2-3093-4d48-85b9-1a1465daac60","keyword":"复合催化剂","originalKeyword":"复合催化剂"},{"id":"3c10f55f-3006-4e8a-a225-9d40104cc32e","keyword":"光催化","originalKeyword":"光催化"},{"id":"8cf7f9bb-e510-4377-81b8-8465c83403c3","keyword":"罗丹明B","originalKeyword":"罗丹明B"}],"language":"zh","publisherId":"rgjtxb98201703013","title":"ZnWO4-ZnO复合光催化剂的制备及光催化性能","volume":"46","year":"2017"},{"abstractinfo":"采用水热法制备ZnWO4薄膜,研究了基体在反应釜不同位置对ZnWO4薄膜及其在染料敏化太阳能电池(DSSCs)中的光电性能的影响.采用XRD、SEM、UV-Vis、I-V及EIS对ZnWO4薄膜的结构、形貌及光电性能进行了表征.结果表明,反应釜不同位置得到的ZnWO4薄膜,均属黑钨矿型结构.薄膜的致密程度和厚度由反应釜顶部到底部依次增加,并且组成薄膜的颗粒由椭圆球状逐渐变为纳米棒状.位于水热反应釜中部位置生长的ZnWO4薄膜组装的DSSCs光电转换效率最高.","authors":[{"authorName":"张林森","id":"580875b8-bfdd-4e7e-b843-16e4cb6fc11f","originalAuthorName":"张林森"},{"authorName":"白庆玲","id":"701093bc-f822-4c80-bccb-3bc9ad5af037","originalAuthorName":"白庆玲"},{"authorName":"韩莉锋","id":"55e615de-31f8-4088-b301-d8372516c12c","originalAuthorName":"韩莉锋"},{"authorName":"王力臻","id":"fe62f908-1f49-4ca1-816a-5fd67667f660","originalAuthorName":"王力臻"},{"authorName":"张爱勤","id":"33bf5f88-fff0-4a00-840d-3d74d2c6b421","originalAuthorName":"张爱勤"},{"authorName":"张勇","id":"2ceab9fe-db08-4121-8ea3-287889226789","originalAuthorName":"张勇"}],"doi":"","fpage":"93","id":"d1e74b20-2b84-46e8-a699-39e3ea03d1ab","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"3c0a37d9-9f07-47dd-9243-aaa241cc7e39","keyword":"ZnWO4","originalKeyword":"ZnWO4"},{"id":"13c4e646-4782-4885-9cfc-c990aaee3922","keyword":"水热法","originalKeyword":"水热法"},{"id":"784fd2ff-41d8-4893-9070-5153d38119e2","keyword":"染料敏化太阳能电池","originalKeyword":"染料敏化太阳能电池"},{"id":"60de47ad-ae96-419b-a383-0e78c7018396","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"rgjtxb98201401017","title":"水热釜中不同位置对ZnWO4薄膜性能的影响","volume":"43","year":"2014"},{"abstractinfo":"以Na2WO4·2H2O和Zn(NO3)2·6H2O为原料,采用水热法制备了掺Ag+的ZnWO4催化剂.利用XRD、TEM和UV-vis吸收光谱对该催化剂进行表征;以曙红B为目标降解物,研究了ZnWO4/Ag催化剂的光催化性能.结果表明,一定量Ag+的掺入使复合光催化剂活性明显优于单一的ZnWO4,Ag+的掺入量为0.5%(原子分数)样品光催化效果最佳,1h内对5mg/L曙红B溶液的脱色率达到93%,是改性前的1.26倍.","authors":[{"authorName":"王金颖","id":"1006d05c-54b2-421f-a1ee-745d95460cf2","originalAuthorName":"王金颖"},{"authorName":"黄妙良","id":"f4badc9e-183b-4813-8a54-31b7d6b29fca","originalAuthorName":"黄妙良"},{"authorName":"钟起权","id":"30af58d2-f10a-4c99-b713-d989bcf7f852","originalAuthorName":"钟起权"},{"authorName":"林建明","id":"537ef59b-4cef-4804-8e76-980e09542802","originalAuthorName":"林建明"},{"authorName":"吴季怀","id":"5b7460d6-2657-4f8e-8c38-0a93ae0f48d6","originalAuthorName":"吴季怀"}],"doi":"","fpage":"1442","id":"e06d2911-aa52-4469-8ecf-3d7307d35db4","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"88d59136-4031-47ce-a55f-dfb596d88abc","keyword":"ZnWO4","originalKeyword":"ZnWO4"},{"id":"a0eda86a-d8cc-42bc-b0d0-afee75ae392e","keyword":"水热法","originalKeyword":"水热法"},{"id":"8d6b5bbb-8d7d-4212-a384-393b7558ab12","keyword":"光催化降解","originalKeyword":"光催化降解"},{"id":"6d5967bf-3720-4fcf-9f56-cb1c6e09d5b8","keyword":"Ag+掺杂","originalKeyword":"Ag+掺杂"}],"language":"zh","publisherId":"gncl200909009","title":"水热法合成纳米ZnWO4/Ag及其光催化性能研究","volume":"40","year":"2009"},{"abstractinfo":"采用水热法经过煅烧热处理成功制备了ZnWO4∶Sm3+白色荧光粉.通过X射线粉末衍射仪,扫描电子显微镜及荧光分光光度计对样品的物相结构、形貌粒度及发光性能进行了分析和表征.结果表明:在pH值为6和7下,所合成的ZnWO4∶Sm3+晶体结构与ZnWO4相似,为单斜晶系结构,样品颗粒为类球形,颗粒尺寸范围为100 ~ 220 nm.Sm3的摩尔掺杂量为0.5%时,发射峰强度达到最大值;继续增加Sm3+浓度,其发射峰强度反而减弱,出现了浓度猝灭效应.在254 nm波长激发下,ZnWO4∶Sm3+的色坐标集中在冷白光区.","authors":[{"authorName":"翟永清","id":"7e9a1a44-6bf7-4237-b20f-a2c81499898e","originalAuthorName":"翟永清"},{"authorName":"王蒙","id":"e225b9ad-c1ec-4ea9-a59e-ce9b925f24e4","originalAuthorName":"王蒙"},{"authorName":"李璇","id":"50c15cba-f2c8-496d-bb03-ea5c98021b91","originalAuthorName":"李璇"},{"authorName":"杨红蕾","id":"c1c61a8e-9c67-4293-a41a-d4a0197e56a8","originalAuthorName":"杨红蕾"},{"authorName":"丁皇慧","id":"efe714cc-4500-4304-8d22-5310447cd413","originalAuthorName":"丁皇慧"},{"authorName":"余佳宝","id":"95c39a5d-6002-410c-94c1-b7b65e3932f3","originalAuthorName":"余佳宝"}],"doi":"","fpage":"1523","id":"5ce82d01-e148-4d01-82a7-84c1871bcd82","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"78db7014-1f9f-4296-97f4-3ed5fb84d97b","keyword":"冷白光荧光粉","originalKeyword":"冷白光荧光粉"},{"id":"de768794-1944-4b1c-aa2d-5b6811dc6d3c","keyword":"钨酸锌","originalKeyword":"钨酸锌"},{"id":"c14db31d-5bc4-4535-9b49-d6f906c24cca","keyword":"水热法","originalKeyword":"水热法"},{"id":"c008d277-8078-4b25-b29b-c8bdfdc3219f","keyword":"浓度猝灭","originalKeyword":"浓度猝灭"}],"language":"zh","publisherId":"rgjtxb98201506018","title":"冷白光荧光粉ZnWO4∶Sm3+的制备及发光性质","volume":"44","year":"2015"},{"abstractinfo":"通过水热法合成了不同浓度Er3+掺杂ZnWO4纳米棒, 并通过XRD、TEM和DRS等对其进行了表征.通过在模拟太阳光照射下光降解RhB的速度来检测ZnWO4样品的光催化活性, 研究了Er3+掺杂浓度对ZnWO4催化活性的影响.实验结果表明,当Er3+掺杂浓度为2mol%时,其光催化性能最好,因为引进Er3+后, Er3+加快了电荷分离效率.","authors":[{"authorName":"周宇","id":"7fd129c2-652d-4a67-ae4c-19cfdc75a9d9","originalAuthorName":"周宇"},{"authorName":"张志洁","id":"aa21b869-a79b-4280-bf60-41098b5c0c84","originalAuthorName":"张志洁"},{"authorName":"徐家跃","id":"8fe1144f-32d3-4fef-8bde-aa7acdf9bdd0","originalAuthorName":"徐家跃"},{"authorName":"储耀卿","id":"7c27f9f8-5a90-421a-a10c-5edf7cc5aa5a","originalAuthorName":"储耀卿"},{"authorName":"尤明江","id":"6eeaa7be-2ed4-4ab3-9fd7-302d093b2698","originalAuthorName":"尤明江"}],"doi":"10.15541/jim20140574","fpage":"549","id":"6a43d26c-1a2f-4784-a043-db7e5e7ec85e","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"b9ce0cba-481d-4c3c-b9ed-f3a381a583d3","keyword":"Er3+掺杂钨酸锌","originalKeyword":"Er3+掺杂钨酸锌"},{"id":"21d79f2c-4cbf-402a-a85a-60c624a7db72","keyword":"光催化剂","originalKeyword":"光催化剂"},{"id":"d8989baf-e938-454c-a5a4-faafb4b68d8c","keyword":"罗丹明B","originalKeyword":"罗丹明B"},{"id":"e23e0d05-dd83-4cf4-a71a-e9b6ab258210","keyword":"电荷分离","originalKeyword":"电荷分离"}],"language":"zh","publisherId":"wjclxb201505016","title":"Er3+掺杂ZnWO4的合成及光催化活性研究","volume":"30","year":"2015"},{"abstractinfo":"以柠檬酸为螯合剂,采用沉淀法制备了稀土Tb3掺杂的ZnWO4绿色荧光粉前驱体.通过差热分析(DTA)、热重分析(TG)、X射线衍射(XRD)等手段对产物进行了表征.结果表明,当退火温度低于700℃时,得到的样品为非晶态,而高于850℃退火处理后为单斜结构.使用荧光分光光度计研究了Tb3+在ZnWO4基质中的发光性质.结果显示,ZnWO4∶Tb3+样品在544 nm波长光的监测下于200~300 nm处出现由W→O及Tb→O跃迁共同作用产生的重叠激发峰和系列Tb3的f-f跃迁锐峰,其中位于488 nm处的激发峰非常显著,对应于Tb3的7F6→5D4跃迁.说明该法制备的荧光粉ZnWO4∶Tb3+能够被蓝光有效激发,可以与广泛使用的蓝光LED芯片的输出波长相匹配.在488 nm波长光的激发下观察到ZnWO4粉末中Tb3+的544 nm(5D4→7F5)强的特征发射,说明ZnWO4∶Tb3粉末可作为白光LED的绿色补偿荧光粉.当以267 nm激发ZnWO4∶Tb3+时,有宽的WO42-特征发射峰和Tb3的5D4→7F6及5D4 →7F5跃迁产生的发射峰,随着Tb3掺杂浓度的增加,WO42-的特征发射强度逐渐降低,而Tb3+的5D4→7F5跃迁强度增大,表明Tb3+与WO42-之间有能量转移.","authors":[{"authorName":"莎仁","id":"ab29ce77-e249-4366-8110-6ccb34e1253e","originalAuthorName":"莎仁"},{"authorName":"杨明学","id":"36a689e1-c82f-4d26-a896-12bd3d6ae3a5","originalAuthorName":"杨明学"}],"doi":"10.13373/j.cnki.cjrm.2015.02.006","fpage":"130","id":"4e85b3c0-3cf0-4334-88b2-630255ea0a89","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"d357ad75-78cb-4296-8990-e73eb7ef3440","keyword":"Tb3+掺杂","originalKeyword":"Tb3+掺杂"},{"id":"7ec52395-cf3b-4353-8c53-af5a5ff86d71","keyword":"ZnWO4","originalKeyword":"ZnWO4"},{"id":"284dcb54-ad93-4106-a665-2de761f3112a","keyword":"发光性能","originalKeyword":"发光性能"},{"id":"efecec51-2de3-454f-8560-8b1d554894bf","keyword":"绿光荧光粉","originalKeyword":"绿光荧光粉"}],"language":"zh","publisherId":"xyjs201502006","title":"Tb3+掺杂ZnWO4基绿色荧光粉的发光性能","volume":"39","year":"2015"},{"abstractinfo":"以Na2WO4·2H2O和Zn(NO3)2·6H2O为原料,采用水热法制备出ZnWO4纳米晶催化剂.以曙红B为目标降解物,研究了ZnWO4催化剂的光催化性能,探讨了水热温度、水热时间和水热溶液pH值对ZnWO4催化剂的结晶形态及光催化活性的影响规律,结果表明:在酸性条件下制备的ZnWO4为片状结构,链状分布,而在碱性条件下为棒状结构.在180 ℃,24 h的制备条件下,ZnWO4催化剂显示出最高的光催化活性.水热溶液pH=5和pH=8时制得的催化剂在2 h内对5 mg/L的曙红B溶液的脱色率分别达到86%和95%.制备过程中溶液的pH值,催化剂的晶态和比表面积是影响催化剂活性的重要因素.","authors":[{"authorName":"王金颖","id":"54f975a3-dfe0-4b03-b6fd-2ab0c03f3492","originalAuthorName":"王金颖"},{"authorName":"黄妙良","id":"18a61274-a3a0-48ef-8c41-d12fc1e04a98","originalAuthorName":"黄妙良"},{"authorName":"钟起权","id":"fe072264-e28d-43cd-8795-eeed0a2c90f4","originalAuthorName":"钟起权"},{"authorName":"林建明","id":"142bb9bf-90ce-4e54-b4ec-e64ad165cf8c","originalAuthorName":"林建明"},{"authorName":"吴季怀","id":"c1a929b2-9538-4842-8371-e24c9418a375","originalAuthorName":"吴季怀"}],"doi":"","fpage":"64","id":"5497a08a-e7ad-4852-a05f-00c22dfd3692","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"d5918b01-3bee-405a-834d-26206b026d61","keyword":"ZnWO4","originalKeyword":"ZnWO4"},{"id":"8060c18f-8efa-4514-a300-596476168285","keyword":"光催化剂","originalKeyword":"光催化剂"},{"id":"033b82f3-dd7e-41ab-b99d-9e04157047ee","keyword":"水热法","originalKeyword":"水热法"},{"id":"96afaf71-c5c2-451b-b17a-40bf9cd096d2","keyword":"曙红B","originalKeyword":"曙红B"}],"language":"zh","publisherId":"rgjtxb98200901013","title":"ZnWO4纳米晶光催化剂的制备及表征","volume":"38","year":"2009"},{"abstractinfo":"以Na2WO4·2H2O和Zn(COOCH3)2·2H2O为原料, 采用微波水热法, 制备具有光催化性能的黑钨矿型棒状ZnWO4纳米晶. 利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、紫外–可见吸收光谱仪(UV-Vis)和光致发光谱仪(PL)分别对产物的物相、形貌和光学性能进行了表征. 结果表明: 采用微波水热法, 产物沿(100)晶面取向生长为棒状结构; 对其光学性能和光催化性能的研究显示, 所制备的ZnWO4具有蓝光发光特性, 其激发峰和发射峰分别为295和460 nm, 其还具有较强的紫外吸收特性; 棒长约为50~60 nm, (100)取向度为0.24的ZnWO4纳米晶具有最佳的光催化性能.","authors":[{"authorName":"张晓薇","id":"9f9f2923-8973-4d73-9ca2-324cad42d706","originalAuthorName":"张晓薇"},{"authorName":"曹丽云","id":"1b3e4f89-0b38-41d1-9c44-9a4a98946bb0","originalAuthorName":"曹丽云"},{"authorName":"黄剑锋","id":"163ac30d-9b75-45c6-a636-701c01254099","originalAuthorName":"黄剑锋"},{"authorName":"刘一军","id":"3965b92f-35b9-4486-abb5-3fe935e6b120","originalAuthorName":"刘一军"},{"authorName":"李佳","id":"b95b0059-65a2-47ca-b86d-ba39ac458ab4","originalAuthorName":"李佳"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2012.12024","fpage":"1159","id":"ebb17b60-64d4-4c4c-8439-dfd86828f4a1","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ab3fe78e-c85e-40ba-84da-dcd69e1c5517","keyword":"微波水热法; ZnWO4; 形貌; 光催化性","originalKeyword":"微波水热法; ZnWO4; 形貌; 光催化性"}],"language":"zh","publisherId":"1000-324X_2012_11_2","title":"棒状ZnWO4纳米晶的合成及其光催化性能","volume":"27","year":"2012"},{"abstractinfo":"以Na2WO4·2H2O和Zn(COOCH3)2·2H2O为原料,采用微波水热法,制备具有光催化性能的黑钨矿型棒状ZnWO4纳米晶.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、紫外-可见吸收光谱仪(UV-Vis)和光致发光谱仪(PL)分别对产物的物相、形貌和光学性能进行了表征.结果表明:采用微波水热法,产物沿(100)晶面取向生长为棒状结构;对其光学性能和光催化性能的研究显示,所制备的ZnWO4具有蓝光发光特性,其激发峰和发射峰分别为295和460 nm,其还具有较强的紫外吸收特性;棒长约为50~60 nm,(100)取向度为0.24的ZnWO4纳米晶具有最佳的光催化性能.","authors":[{"authorName":"张晓薇","id":"75a0a2ab-edee-483e-a1cf-c262ee83b64e","originalAuthorName":"张晓薇"},{"authorName":"曹丽云","id":"9f275ead-b95c-4489-b809-df58876ae5f7","originalAuthorName":"曹丽云"},{"authorName":"黄剑锋","id":"fcb65d53-6e3f-44f7-8c44-2146979e7390","originalAuthorName":"黄剑锋"},{"authorName":"刘一军","id":"141a2cb2-5d42-443e-9172-4b214a03d54f","originalAuthorName":"刘一军"},{"authorName":"李佳","id":"6a77db51-31ad-48cf-b20c-f8cfc4be384f","originalAuthorName":"李佳"}],"doi":"10.3724/SP.J.1077.2012.12024","fpage":"1159","id":"d67f5df0-f878-4655-b80b-cbac20a8d32b","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"bef61f7b-ccfb-414f-bf95-6dae80ab46ff","keyword":"微波水热法","originalKeyword":"微波水热法"},{"id":"ac48141d-af05-4de2-9a5a-8128f5658a61","keyword":"ZnWO4","originalKeyword":"ZnWO4"},{"id":"7eb66dff-6376-4e85-8f31-2b36b4054e5d","keyword":"形貌","originalKeyword":"形貌"},{"id":"8af50737-0248-4d66-b6d4-94af4fc1f27e","keyword":"光催化性","originalKeyword":"光催化性"}],"language":"zh","publisherId":"wjclxb201211006","title":"棒状ZnWO4纳米晶的合成及其光催化性能","volume":"27","year":"2012"},{"abstractinfo":"采用水热法,通过控制焙烧温度和PEG-1000用量制备了一系列不同发光强度的ZnWO4荧光粉体,运用X射线粉末衍射仪、红外光谱仪、扫描电子显微镜和荧光分光光度计等对样品进行了分析和表征.结果表明:得到的ZnWO4蓝色荧光粉均为黑钨矿纯相;水热产物为类球形小颗粒,经700℃焙烧后得到边缘清晰的短棒状结构;添加0.5 gPEG-1000且700℃焙烧后所得样品颗粒仍为短棒状结构,但其颗粒尺寸明显减小.ZnWO4的发射光谱由一宽发射带组成,峰值位于465 nm处;水热法制备的ZnWO4粉体经过焙烧可以提高荧光粉的结晶度和发光性能,最佳焙烧温度为700℃;表面活性剂PEG-1000的添加也使得荧光粉的发光强度明显提高,最佳用量为0.8 g.","authors":[{"authorName":"翟永清","id":"8ab338c0-357d-401a-8db8-12fa323b1075","originalAuthorName":"翟永清"},{"authorName":"李璇","id":"c1cb1092-615c-494c-ad71-d0b999557b9e","originalAuthorName":"李璇"},{"authorName":"王艳慧","id":"2f8ef208-e27e-44f5-9806-09a986dac989","originalAuthorName":"王艳慧"},{"authorName":"姜曼","id":"16003535-55ed-412f-8da1-8e2263e17107","originalAuthorName":"姜曼"},{"authorName":"刘佳","id":"58b8d3dc-5faa-4dd9-9d94-3c9379d883f0","originalAuthorName":"刘佳"}],"doi":"","fpage":"913","id":"9b260d3d-1ff8-4d1a-a797-3f35fa9979ef","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"178c7f31-c26b-4c95-9370-6771812566b5","keyword":"ZnWO4","originalKeyword":"ZnWO4"},{"id":"f59bca26-4cae-4ca8-b8d5-b358c9b76aed","keyword":"水热法","originalKeyword":"水热法"},{"id":"f039d999-0edb-45be-ae38-8e7f80ac971a","keyword":"发光性质","originalKeyword":"发光性质"},{"id":"bb56d6e6-8858-4edd-b41d-7c17742570d5","keyword":"PEG-1000","originalKeyword":"PEG-1000"}],"language":"zh","publisherId":"xyjsclygc201604018","title":"水热合成ZnWO4粉体的结构、形貌及其发光性能","volume":"45","year":"2016"}],"totalpage":3785,"totalrecord":37845}