{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以深缺口宽板拉伸试验的结果为基础,通过建立宽板试验与冲击试验的关系,得到了14MnNbq钢及其焊缝的断裂抗力表达式,为该钢的防断适用性分析提供了试验依据.","authors":[{"authorName":"钱维平","id":"60a65cd7-ef7e-4e33-98be-8d80f676bec0","originalAuthorName":"钱维平"},{"authorName":"李刚","id":"d8d4ea59-0360-4913-b28e-fd3edf60744b","originalAuthorName":"李刚"},{"authorName":"马建坡","id":"8e47f27d-ac67-4f67-b105-650a5d1208bf","originalAuthorName":"马建坡"}],"doi":"10.3969/j.issn.1003-1545.2000.03.010","fpage":"33","id":"46aa0c27-70e9-4f9a-b932-9307f8bfd4fc","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"cebce89e-db7b-4fd4-a906-0a86107da408","keyword":"断裂抗力","originalKeyword":"断裂抗力"},{"id":"5dcb3574-a0fe-41f4-8bc4-a6e52a3792a9","keyword":"宽板试验","originalKeyword":"宽板试验"},{"id":"354000e9-083c-49e5-b67e-3ffac9e7213a","keyword":"桥梁钢","originalKeyword":"桥梁钢"}],"language":"zh","publisherId":"clkfyyy200003010","title":"14MnNbq钢及其焊缝的断裂抗力表述","volume":"15","year":"2000"},{"abstractinfo":"20世纪90年代前,汽车上使用的各种圆柱螺旋弹簧(以下称弹簧)承受较低的扭转疲劳载荷,在交变正应力作用下,绝大多数发生的是宏观正断型疲劳断裂,其形貌呈45°斜断口.因为喷丸强化弹簧表层引入的残余应力与外施交变正应力间存在交互作用,所以都利用喷丸强化工艺中的“应力强化机制”提高其疲劳断裂抗力.但21世纪伊始,随着轿车结构的迅速发展,设计者迫切要求弹簧承受的扭转疲劳载荷水平与日俱增,由此导致喷丸强化的弹簧除正断型的疲劳断裂外,时而出现纵向或横向切断型的疲劳断裂,由此引发疲劳断裂抗力发生显著下降,以往很少出现这种难以理解的现象.目前从事喷丸强化工艺技术的弹簧制造行业很少有文献关注这类问题.文中通过逻辑思维对弹簧的受力分析得出的诠释发现:在切断模式下,喷丸引入的残余应力与外施交变切应力之间不存在交互作用,表明“应力强化机制”在改善切断型疲劳断裂抗力中的强化作用已经基本消失.根据作者提出的喷丸强化工艺原理,喷丸同步引入弹簧表层的是由残余应力与循环弹塑性变形改性的组织结构组成的一对“孪生”,通过分析作者发现,“孪生”中改性的显微组织结构形成的“组织结构强化机制”取代“应力强化机制”起到了改善切断型疲劳断裂抗力的作用.研究结果还表明,优化的喷丸强化工艺必须同时具备“组织结构强化机制”和“应力强化机制”,才能够起到改善正断型和切断型疲劳断裂抗力的作用.","authors":[{"authorName":"王仁智","id":"80b6eaad-bfbd-4c73-ba14-c81012b7b1b7","originalAuthorName":"王仁智"},{"authorName":"汝继来","id":"8a6f12ea-15a2-48c8-9411-541c5e5d6bd8","originalAuthorName":"汝继来"}],"doi":"10.11933/j.issn.1007-9289.2016.04.001","fpage":"1","id":"ca03ed4b-5abf-431a-ae38-9fcb3c7d1924","issue":"4","journal":{"abbrevTitle":"ZGBMGC","coverImgSrc":"journal/img/cover/ZGBMGC.jpg","id":"79","issnPpub":"1007-9289","publisherId":"ZGBMGC","title":"中国表面工程"},"keywords":[{"id":"cf33b832-5954-4034-a021-90dccb7d2ec8","keyword":"喷丸强化原理","originalKeyword":"喷丸强化原理"},{"id":"494f9961-2c56-4c60-a6b7-cf927e67a1c7","keyword":"疲劳断裂抗力","originalKeyword":"疲劳断裂抗力"},{"id":"94422365-dd1a-4b66-8ec4-d1aa75c7f309","keyword":"疲劳断裂强化机制","originalKeyword":"疲劳断裂强化机制"},{"id":"b25f1db4-c690-42ba-aa4f-587975d4f1b1","keyword":"疲劳断裂模式分类法","originalKeyword":"疲劳断裂模式分类法"}],"language":"zh","publisherId":"zgbmgc201604001","title":"喷丸强化的基本原理与调控正/切断裂模式的疲劳断裂抗力机制图","volume":"29","year":"2016"},{"abstractinfo":"铁碳系统碳素钢为机械制造工程支撑用材,在共析钢中珠光体晶团内,铁素体层片位向为等同的,晶团属相变基本单元,同样在亚共析钢中,除部分珠光体外,其中等轴状先共析铁素体的组织结构为有序的,实质上,为一晶团.因此,铁素体晶团为铁碳系统碳素钢组织结构的基元结构,钢件力学性能受控于晶团.晶团解理等效于珠光体解理,反之亦然,最为凸显的是,所有晶团的统计尺寸,是6μm小尺寸的,这是必然的,解理断裂抗力反比晶团尺寸(N-1/2α),且与外界条件变化无关,诸如与外界温度变化无关,均为铁碳钢材至为珍贵特性.珠光体晶团结构为有序型的,珠光体的结构便亦为有序型的,认为珠光体的形成机制为无序扩散型的是错误的,其形成机制为有序型的.","authors":[{"authorName":"俞德刚","id":"cc79b94f-9272-4a74-835c-ba939a6361d2","originalAuthorName":"俞德刚"}],"doi":"","fpage":"1","id":"8529d527-364d-4088-8c5d-de7bfc11897d","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"0791d454-5ecf-4892-b258-b9def3803222","keyword":"珠光体晶团","originalKeyword":"珠光体晶团"},{"id":"9ee00d40-2577-4b50-a6ba-2a03ce967c94","keyword":"晶团解理","originalKeyword":"晶团解理"},{"id":"f2696fae-0c1c-4e5b-9a1f-349368dd9e4f","keyword":"相变机制","originalKeyword":"相变机制"}],"language":"zh","publisherId":"jsrclxb201610001","title":"共析钢珠光体晶团的形成及其力学性能和解理断裂抗力的控制效应","volume":"37","year":"2016"},{"abstractinfo":"在Gleeble-1500热模拟试验机上,分析钼的高温变形特征,其变形温度为1100~1400℃,变形速率为1~5 0s-1,变形程度为0~0.6,并对钼板进行塑性变形抗力的研究,采用非线性回归方法建立钼板的变形抗力模型.获得了钼板的变形抗力曲线图,对不同的数学模型结构进行回归比较,提出拟合精度高的变形抗力的数学模型,该模型具有较高的精度及良好的数值稳定性.","authors":[{"authorName":"陈程","id":"6d44a833-f6c6-418b-811a-b3ec5845cccb","originalAuthorName":"陈程"},{"authorName":"尹海清","id":"dcf92053-8aa5-4bc6-9047-14f60374a26c","originalAuthorName":"尹海清"},{"authorName":"曲选辉","id":"19f51814-d72f-42db-b40d-77ae9637297d","originalAuthorName":"曲选辉"},{"authorName":"朱琳","id":"f9412d6c-2e0c-4fbf-98e0-91c908194663","originalAuthorName":"朱琳"}],"doi":"","fpage":"1237","id":"35182928-7d7c-42c7-a888-e694e79e42f2","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e68dd853-8a07-4f0d-9ab1-6f0f0dff2bd6","keyword":"钼","originalKeyword":"钼"},{"id":"01d76fe2-ce58-48d6-bb43-0cfe151a9f0c","keyword":"变形抗力","originalKeyword":"变形抗力"},{"id":"498bae0e-52e4-41c3-a8bb-c237b66bfa0a","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"xyjsclygc200707024","title":"钼变形抗力的研究","volume":"36","year":"2007"},{"abstractinfo":"利用Gleeble-1500热模拟试验机对304不锈钢的金属塑性变形抗力进行了试验研究.首先通过单道次压缩试验研究了变形温度、变形速率和变形程度对变形抗力的影响,合理选择变形抗力数学模型并给出待定系数,然后研究了试验的重复性和试样长度对试验结果的影响,最后通过双道次压缩试验研究了道次间的残余应变对变形抗力的影响并建立了在考虑残余应变影响条件下的变形抗力数学模型.该模型可为计算304不锈钢的变形抗力提供理论依据.","authors":[{"authorName":"韩庆","id":"83355ee1-536d-4ca2-840c-8198d7fa9ec7","originalAuthorName":"韩庆"},{"authorName":"周石光","id":"ab932b79-f124-402e-abf9-05a304400cc8","originalAuthorName":"周石光"}],"doi":"","fpage":"60","id":"05eb2669-c29d-4cde-bfcc-4ce2a060a529","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"846106bd-4366-45d8-9476-f3ab2064b4da","keyword":"304不锈钢","originalKeyword":"304不锈钢"},{"id":"7791297a-ea4f-438d-9a88-9feb173b0651","keyword":"变形抗力","originalKeyword":"变形抗力"},{"id":"2d918da4-52ac-42ea-aacc-bad2f85e843f","keyword":"残余应变","originalKeyword":"残余应变"}],"language":"zh","publisherId":"gtyjxb200911014","title":"304不锈钢变形抗力试验","volume":"21","year":"2009"},{"abstractinfo":"利用Gleeble-1500热模拟试验机对304L不锈钢的金属塑性变形抗力进行了试验研究。首先通过单道次压缩实验研究了变形温度、变形速率和变形程度对变形抗力的影响,合理选择变形抗力数学模型并给出待定系数,然后研究了试验的重复性和试样长度对试验结果的影响,最后通过双道次压缩实验研究了道次间的残余应变对变形抗力的影响并建立了在考虑残余应变影响条件下的变形抗力数学模型。该模型可为计算304L不锈钢的轧制力提供理论依据。","authors":[{"authorName":"韩庆","id":"155ab80d-8658-4f17-8c2e-b5724b4c0e10","originalAuthorName":"韩庆"}],"categoryName":"|","doi":"","fpage":"60","id":"37073e0f-3b4f-4667-8d6c-d0f5f857cb4f","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"27f46c47-e7c6-4e3b-b2ca-87fe2a518aaf","keyword":"304L;变形抗力;残余应变;热模拟试验","originalKeyword":"304L;变形抗力;残余应变;热模拟试验"}],"language":"zh","publisherId":"1001-0963_2009_11_7","title":"304不锈钢变形抗力试验","volume":"21","year":"2009"},{"abstractinfo":"针对冷连轧轧制过程的特点,变形程度是影响变形抗力的一个重要因素。建立了变形抗力的机理模型,并将理论模型与实际数据相结合。采用某钢厂生产的低碳钢08AlA稳定轧制时的现场实测数据,利用最小二乘逐次回归变形抗力模型中的各个参变量,并选用不同的方法来获得摩擦系数,选出与实际生产数据相吻合的最佳模型。将回归出的不同变形抗力模型,分别代入轧制力迭代公式进行计算,通过比较与实测轧制力的误差,选出最优的形抗力模型应用于实际生产中轧制力和前滑的预设定。","authors":[{"authorName":"杨景明","id":"0514e2b0-23cc-43d0-a57e-839428be7209","originalAuthorName":"杨景明"},{"authorName":"郝瑞峰","id":"acacc7a7-dc3e-4cbd-bf52-2b52e3dea640","originalAuthorName":"郝瑞峰"},{"authorName":"车海军","id":"364b0033-9864-49de-a1fc-26c0aa18a9cc","originalAuthorName":"车海军"},{"authorName":"杨志芬","id":"30251d08-d240-4c89-bb91-07ffddffdfb4","originalAuthorName":"杨志芬"}],"doi":"","fpage":"28","id":"b12e1e86-46e7-4475-a553-bd3a35a29e9f","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"83a7835c-5b6d-4bbd-a4bd-d1864fa1579e","keyword":"冷连轧","originalKeyword":"冷连轧"},{"id":"6612b806-340d-4da4-80e0-6cdd733835d4","keyword":"轧制力","originalKeyword":"轧制力"},{"id":"0b4a1a4f-8d34-4ca4-9933-f0764cabd6e6","keyword":"变形抗力","originalKeyword":"变形抗力"},{"id":"6554b280-5974-4343-ab43-7e57479c7aeb","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"24143eaa-ef14-4c3a-82fe-d9b1473cb589","keyword":"最小二乘","originalKeyword":"最小二乘"}],"language":"zh","publisherId":"gtyj201202010","title":"带钢冷连轧材料变形抗力模型研究","volume":"40","year":"2012"},{"abstractinfo":"对精轧阶段存在相变的热轧钢种,因变形抗力随轧制温度的变化规律与常规的奥氏体轧制钢种显著不同,使得传统变形抗力模型的预报误差较大,严重影响这类钢种的轧制稳定性.为此,研发了一种热轧相变过程变形抗力模型,通过在原变形抗力模型基础上添加一个新的相变趋势项,该修正项为轧制温度的二次多项式函数,并根据钢种分类来精细优化适应不同钢种轧制的多项式待定参数.该模型目前已成功应用于涟钢CSP热连轧生产线变形抗力在线计算,实际生产应用表明,新模型上线后,变形抗力与轧制力的预报精度显著提高,轧制力模型预报误差12%以内的比例从83.3%提高到96.7%,满足了热连轧精轧相变带钢的稳定生产要求.","authors":[{"authorName":"李维刚","id":"d987d069-2918-439b-84a9-09a53ebf6439","originalAuthorName":"李维刚"},{"authorName":"冯宁","id":"461afec6-8899-496d-be3f-4a9561469022","originalAuthorName":"冯宁"},{"authorName":"王慎德","id":"1177cc78-7186-4bb1-b3c2-d7591577a0a3","originalAuthorName":"王慎德"},{"authorName":"严保康","id":"36624939-ce66-4f85-8d39-ec0c43d0fa2f","originalAuthorName":"严保康"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160462","fpage":"61","id":"61472d9d-78ce-4ede-86d8-a22fcf17acde","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a21a0eba-1e9f-4eea-8ae2-4b33bbc8b6c9","keyword":"热轧带钢","originalKeyword":"热轧带钢"},{"id":"191e2156-db13-4fa0-b3ab-df4857e0cd9d","keyword":"变形抗力","originalKeyword":"变形抗力"},{"id":"d9192f16-e952-4412-83f2-1aabd225450e","keyword":"轧制力","originalKeyword":"轧制力"},{"id":"4b6ea56c-50d8-40f8-905c-b8cf89861d94","keyword":"相变","originalKeyword":"相变"}],"language":"zh","publisherId":"gt201706010","title":"热轧相变过程变形抗力模型研究与开发","volume":"52","year":"2017"},{"abstractinfo":"研究了渗碳钢20CrMo表面滚压强化工艺,结果表明,钢渗碳、淬火、低温回火后进行滚压,具有高的多冲接触疲劳抗力,在一定深度范围内,多冲接触疲劳抗力随滚压层深的增加而提高.","authors":[{"authorName":"燕来生","id":"698391d6-c2ef-4662-886e-269beadc856d","originalAuthorName":"燕来生"}],"doi":"10.3969/j.issn.1009-6264.2000.04.010","fpage":"52","id":"943634c1-eaee-4ef7-aa28-361c8391502d","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"a8ba8cef-d28a-4bba-960e-5b150b1c3270","keyword":"渗碳钢","originalKeyword":"渗碳钢"},{"id":"a2274300-6e63-4d8e-ad14-f5c1e3632572","keyword":"滚压强化","originalKeyword":"滚压强化"},{"id":"44c4a079-f4fd-4d8c-9350-e7b339b3849f","keyword":"多冲接触疲劳抗力","originalKeyword":"多冲接触疲劳抗力"}],"language":"zh","publisherId":"jsrclxb200004010","title":"提高渗碳钢多冲接触疲劳抗力的研究","volume":"21","year":"2000"},{"abstractinfo":"采用原始静态变形抗力模型,并考虑入口、出口弹性变形轧制力对模型的道次影响系数,进行计算优化,建立了1个优化的变形抗力模型。2种模型的对比表明,优化的模型精度更高,提高了轧制力的计算精度。","authors":[{"authorName":"杨奕","id":"1dc1116f-ba64-4cf4-8181-14ae8069ccc2","originalAuthorName":"杨奕"},{"authorName":"韩斌","id":"66e695ce-6171-4632-bfe0-60c01cef312b","originalAuthorName":"韩斌"}],"doi":"","fpage":"21","id":"c581b1e8-da89-4cb4-833e-a2e8fa05a4c8","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"ab4688a9-6274-4bc0-8e3e-d070ef08e2aa","keyword":"冷连轧","originalKeyword":"冷连轧"},{"id":"1ad75512-1e25-4eee-9700-74c82a451605","keyword":"变形抗力模型","originalKeyword":"变形抗力模型"},{"id":"2f756e78-774e-4c17-b5d4-b6d423467031","keyword":"轧制力模型","originalKeyword":"轧制力模型"},{"id":"50815a37-6ecb-42b5-9f14-04f5d01b4005","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"gtyj201106008","title":"冷连轧变形抗力模型的优化","volume":"39","year":"2011"}],"totalpage":909,"totalrecord":9088}