Ailan QU
,
Xiufang WEN
,
Pihui PI
,
Jiang CHENG
,
Zhuoru YANG
材料科学技术(英文)
Fluoropolymer and different kinds of silica particles were used for controlling surface chemistry and morphology, respectively. A superhydrophobic surface originated from strawberry-like or quincunx-shaped composite silica particles was obtained. The dual size particles are obtained by utilizing the graft of different modified silica particles with epoxy functional group and amine functional group. This makes the surface of film form a composite interface to have irregular binary structure which plays an essential role in trapping air between the substrate surface and the liquid droplets to be necessary for high contact angle and low contact angle hysteresis. The maximum contact angle for water on the hybrid film is about 174±2° and the contact angle hysteresis is less than 2°. The surface morphologies, roughness and the wettability on the surface of films containing different structural silica particles were compared. It was shown that the hierarchical irregularly structure with a low roughness factor and high air-trapped ratio is indispensable for superhydrophobic surface. Although this structural surfaces based on composite silica particles play a vital role in governing the surface wettability, it is necessary to combine with a low surface energy to make the surface superhydrophobic.
关键词:
Superhydrophobicity
,
双微观结构
,
纳米复合粒子
,
含氟硅
杨金鑫
,
文秀芳
,
皮丕辉
,
郑大锋
,
程江
,
杨卓如
无机材料学报
以机械高速搅拌法制备了具有草莓结构的CaCO3/SiO2复合粒子,并对其进行了表面修饰改性.利用聚硅氧烷的自组装功能,将制备的复合粒子与硅氧烷一起制备了具有"荷叶效应"的超疏水涂层,静态水接触角达169°,滚动角约为2°.通过扫描电镜观察涂层的表面微观形貌,发现该涂层具有微米-纳米相结合的双层粗糙结构.微米凸起的粒径在2~3μm左右,纳米凸起的粒径约为200nm左右,与荷叶具有类似的结构排布方式.通过原子力显微镜和接触角的测试,探讨了表面微观结构、涂层粗糙度和涂层疏水性能之间的关系.结果表明:复合粒子构成的非均相界面的水接触角符合Cassie模型.复合粒子赋予涂层的双微观粗糙结构与自组装成膜硅氧烷的低表面能的协同效应,使涂层具有了优良的超疏水性能.
关键词:
复合粒子
,
双微观结构
,
超疏水