{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"李群方法是研究非线性微分方程有力工具,应用经典或非经典李对称方法可得到大量非线性微分方程(组)显式解.对于2+1破裂孤子方程,利用CK方法得到了方程求解Bachlund变换公式,从而获得方程一些新精确解,推广了文献[4~8]中结果.","authors":[{"authorName":"郑斌","id":"c13826c7-de1c-4221-88b0-f32e89737569","originalAuthorName":"郑斌"}],"doi":"10.3969/j.issn.1007-5461.2006.04.003","fpage":"451","id":"c06a8ecc-3204-4d12-b7cc-299ab2ed7366","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"8fb2ef3d-7b31-4289-b507-ed3a519f9543","keyword":"2+1破裂孤子方程","originalKeyword":"2+1维的破裂孤子方程"},{"id":"56e5bdcc-6e74-4dd7-87a4-b096acb1fa6b","keyword":"CK方法","originalKeyword":"CK方法"},{"id":"c2ba0431-732c-4b64-a8cd-25732dceeabd","keyword":"Backlund变换","originalKeyword":"Backlund变换"},{"id":"57c34aba-a259-4666-8a17-1cf90e0bb88c","keyword":"种子解","originalKeyword":"种子解"},{"id":"7f6b7ec4-bb77-4592-9fe7-8baa0dee2f62","keyword":"精确解","originalKeyword":"精确解"}],"language":"zh","publisherId":"lzdzxb200604003","title":"2+1破裂孤子方程孤子解","volume":"23","year":"2006"},{"abstractinfo":"基于Hirota双线性方法,得到了(2+1)变非线性系数薛定谔方程一个孤子解.数值模拟与解析解一致性表明,在圆柱对称坐标系中,这种克尔型孤子形成了一类新涡流型空间孤子簇.这些孤子传输是稳定,独立于传输距离.","authors":[{"authorName":"徐四六","id":"d17ebd8d-c072-4b32-bb86-4892d2d5d5bb","originalAuthorName":"徐四六"},{"authorName":"陈顺芳","id":"26a38b59-564c-41cc-8b3f-a7cd308e20f7","originalAuthorName":"陈顺芳"},{"authorName":"孙运周","id":"750d8350-c9c2-4e15-9cb1-0a6fa82255c1","originalAuthorName":"孙运周"}],"doi":"10.3969/j.issn.1007-5461.2013.03.015","fpage":"335","id":"0d5bdfea-0965-40f0-9b50-dd2f1a480e3a","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"666dd3d9-1711-4eaf-9b3d-dc050d98034e","keyword":"非线性光学","originalKeyword":"非线性光学"},{"id":"8c14125e-70dc-4aec-96ef-dad991051578","keyword":"涡旋孤子","originalKeyword":"涡旋孤子"},{"id":"230bdc10-3875-4867-b0d2-4beb4fa34d75","keyword":"Hirota双线性方法","originalKeyword":"Hirota双线性方法"},{"id":"a55686b6-d170-49cb-a9c3-a4a1ae25a526","keyword":"非线性薛定谔方程","originalKeyword":"非线性薛定谔方程"}],"language":"zh","publisherId":"lzdzxb201303015","title":"变系数(2+1)非线性薛定谔方程中奇异结构孤子","volume":"30","year":"2013"},{"abstractinfo":"为了构造(2+1)一般Calogero-Bogoyavlenskii-Schiff系统无穷序列类孤子新解,引入了可转化为Riccati方程辅助方程及其新解,给出了Riccati方程新解、Backlund变换和解非线性叠加公式.在此基础上,借助符号计算系统Mathematica,构造了(2+1)一般Calogero-Bogoyavlenskii-Schiff系统无穷序列类孤子新解.这些解由指数函数,三角函数和有理函数复合组成.","authors":[{"authorName":"李宁","id":"8f5be322-66ae-4bb7-aba0-d2a06887736e","originalAuthorName":"李宁"},{"authorName":"套格图桑","id":"9949ad96-9863-466c-885a-7031d87e81ac","originalAuthorName":"套格图桑"}],"doi":"10.3969/j.issn.1007-5461.2015.04.005","fpage":"414","id":"21f74c5d-b468-48d4-8603-fa8ba97b3508","issue":"4","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"d6f881ef-a7f6-4f48-96fd-7fd12059c48c","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"18521a00-bc37-4c71-9d9a-0656df2012bc","keyword":"辅助方程","originalKeyword":"辅助方程"},{"id":"d13d578c-bcf3-465b-af9d-88c0c1f97995","keyword":"(2+1)一般Calogero-Bogoyavlenskii-Schiff系统","originalKeyword":"(2+1)维一般Calogero-Bogoyavlenskii-Schiff系统"},{"id":"97be46f6-349e-413d-9cdb-fbc4258e2d44","keyword":"无穷序列类孤子新解","originalKeyword":"无穷序列类孤子新解"}],"language":"zh","publisherId":"lzdzxb201504005","title":"(2+1)一般Calogero-Bogoyavlenskii-Schiff系统无穷序列类孤子新解","volume":"32","year":"2015"},{"abstractinfo":"为了获得非线性发展方程无穷序列新精确解,给出了Riccati方程一些新解和Baicklund变换以及解非线性叠加公式.Riccati方程与函数变换相结合,借助符号计算系统Mathematica,构造了(2+1)色散长波方程组新无穷序列精确解.这些解包括无穷序列类孤子解、无穷序列复合型解等.这种方法在构造非线性发展方程无穷序列精确解领域具有普遍意义.","authors":[{"authorName":"套格图桑","id":"4ddeb3a6-dc7a-42ec-bf04-c03c98a1d641","originalAuthorName":"套格图桑"},{"authorName":"斯仁道尔吉","id":"a96c3d2f-f37d-4b2d-8fff-99e268fbff01","originalAuthorName":"斯仁道尔吉"}],"doi":"10.3969/j.issn.1007-5461.2010.04.004","fpage":"402","id":"fd10857d-9110-4684-98fa-a84e92f1c090","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"77102084-356b-408e-99ca-d8285bd3d985","keyword":"非线性发展方程","originalKeyword":"非线性发展方程"},{"id":"e2ba827e-5c77-4533-acbd-8daa5a4863fd","keyword":"Riccati方程","originalKeyword":"Riccati方程"},{"id":"6178230b-2e8b-423b-a81a-587126f3169e","keyword":"B(a)cklund变换","originalKeyword":"B(a)cklund变换"},{"id":"16cf9ae8-e591-41b6-aa80-db736f2fa6c5","keyword":"非线性叠加公式","originalKeyword":"非线性叠加公式"},{"id":"f2b20849-4c33-4ff5-8581-5b6c3a80c4d4","keyword":"精确解","originalKeyword":"精确解"}],"language":"zh","publisherId":"lzdzxb201004004","title":"(2+1)色散长波方程组新无穷序列精确解","volume":"27","year":"2010"},{"abstractinfo":"利用相容方法,得到了(2+1)非线性发展方程对称,并根据相应特征方程组得到了(2+1)非线性发展方程相似约化,同时得到了一些新显式解.","authors":[{"authorName":"张颖元","id":"3f8b0901-68cd-4bb9-9391-9ceea070626a","originalAuthorName":"张颖元"},{"authorName":"刘希强","id":"c172384d-ebfc-45dc-be5e-28cd536ba800","originalAuthorName":"刘希强"},{"authorName":"王岗伟","id":"30f93f68-1359-4660-855f-588f74cf72ea","originalAuthorName":"王岗伟"}],"doi":"10.3969/j.issn.1007-5461.2012.04.005","fpage":"411","id":"696fa921-2aa7-474b-a5db-02ffec1df238","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"4177be4b-4efb-43aa-a4a2-79404b2a5e37","keyword":"(2+1)非线性发展方程","originalKeyword":"(2+1)维非线性发展方程"},{"id":"04521879-0d4a-4192-bf42-65f618d96982","keyword":"对称约化","originalKeyword":"对称约化"},{"id":"05ab46a7-f705-4b0c-9b17-4084ec6cf565","keyword":"显式解","originalKeyword":"显式解"}],"language":"zh","publisherId":"lzdzxb201204005","title":"(2+1)非线性发展方程对称约化和显式解","volume":"29","year":"2012"},{"abstractinfo":"为了实现在纵向变化参量控制下(2+1)维空间光孤子不稳定性抑制,通过数值求解变系数(2+1)非线性薛定谔方程,讨论了在参量控制下(2+1)维空间光孤子.结果发现,一定参量控制,即沿传播方向周期性改变衍射参量和自聚焦效应参量可有效抑制(2+1)维空间光孤子不稳定性.另外,进一步数值计算表明,在一定参量控制下(2+1)维空间光孤子传输对损耗,有限扰动,如白噪声等不敏感.这表明参量控制(2+1)维空间光孤子应该是稳定.","authors":[{"authorName":"郝瑞宇","id":"be12eed5-f75a-4978-8450-c40633a5630b","originalAuthorName":"郝瑞宇"}],"doi":"10.3969/j.issn.1007-5461.2010.03.014","fpage":"336","id":"eda08574-dc6e-44e3-ac2f-d7d818dfc2b5","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"805d3473-4235-458e-95fb-058341600638","keyword":"非线性光学","originalKeyword":"非线性光学"},{"id":"e781a7e7-8a8e-491c-8150-0bc0fd8e657c","keyword":"参量控制","originalKeyword":"参量控制"},{"id":"19c1463d-8762-438f-9143-3da1575008e7","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"3cfa71cb-95c7-4d3e-9199-db64e2e456b2","keyword":"(2+1)维空间光孤子","originalKeyword":"(2+1)维空间光孤子"}],"language":"zh","publisherId":"lzdzxb201003014","title":"在参量控制下(2+1)维空间光孤子","volume":"27","year":"2010"},{"abstractinfo":"利用经典李群方法,得到了一类(2+1)Gardner方程显式解,推广了唐和陈某些结果,并且得到了该方程对称、约化及其群不变解.","authors":[{"authorName":"许斌","id":"618d459c-de04-4695-86f0-2e04e3ad25bb","originalAuthorName":"许斌"},{"authorName":"刘希强","id":"0ea9690f-a992-4269-93d7-21d98d098317","originalAuthorName":"刘希强"}],"doi":"10.3969/j.issn.1007-5461.2009.05.004","fpage":"531","id":"98ddb3b1-1b58-449e-876d-ca9c258bd0fe","issue":"5","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"005d545a-3f6b-41b3-b123-cdd2e7f04cd1","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"b3af0dd0-6245-484c-bc4d-b17e3d2b0328","keyword":"李群方法","originalKeyword":"李群方法"},{"id":"a94678d7-d624-446f-98a2-b87838685fb6","keyword":"Gardner方程","originalKeyword":"Gardner方程"},{"id":"ac881edd-1d8d-4a34-bc52-3071c5c21dfa","keyword":"对称","originalKeyword":"对称"},{"id":"69b9a38a-8f59-4bba-9a14-a3dbadde98df","keyword":"群不变解","originalKeyword":"群不变解"}],"language":"zh","publisherId":"lzdzxb200905004","title":"(2+1) Gardner 方程对称、约化及其群不变解","volume":"26","year":"2009"},{"abstractinfo":"应用改进简单方程法求得(2+1)ZK-MEW方程精确解,包括双曲函数解、三角函数解.对双曲函数解中参数取特殊值时,可得到孤立波解;对三角函数解中参数取特殊值时,可得到周期波函数解.实践表明:简单方程法在光电子学、量子光学、激光物理和等离子体物理等领域具有广泛应用.","authors":[{"authorName":"杨娟","id":"3993b912-c8c5-4642-bd22-041eca5bb9ea","originalAuthorName":"杨娟"},{"authorName":"冯庆江","id":"0f72a14e-3901-4f09-a4c9-89e2f3f975c7","originalAuthorName":"冯庆江"}],"doi":"10.3969/j.issn.1007-5461.2016.03.004","fpage":"287","id":"a0ba73c5-bd4a-42d7-8f96-b270150d9bb7","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"8ef6249c-dee5-4362-b831-2ef5e764c407","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"341a6b64-2e61-4419-90c2-0e93a4751637","keyword":"(2+1)ZK-MEW方程","originalKeyword":"(2+1)维ZK-MEW方程"},{"id":"cd1af592-d0f2-47a6-b4cc-f8c8da0902e5","keyword":"孤立波解","originalKeyword":"孤立波解"},{"id":"aed93540-50e2-4d9d-a016-084fa2f0aeb9","keyword":"周期波函数解","originalKeyword":"周期波函数解"}],"language":"zh","publisherId":"lzdzxb201603004","title":"应用改进简单方程法求(2+1)ZK-MEW方程精确解","volume":"33","year":"2016"},{"abstractinfo":"通过几种函数变换把(n+1)多重sine-Gordon方程求解转化为常微分方程求解.利用常微分方程首次积分与可求解几种常微分方程Bcklund变换和解非线性叠加公式,构造了(n+1)多重sine-Gordon方程无穷序列类孤子新解.","authors":[{"authorName":"套格图桑","id":"c762171d-c746-44da-aa9f-1d22f2c65ad2","originalAuthorName":"套格图桑"}],"doi":"10.3969/j.issn.1007-5461.2017.03.008","fpage":"316","id":"11a9bf7e-f023-4580-af1b-c84b08c8314e","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"90c7f639-a475-48c3-b4cd-64696f483cbb","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"8c269070-bf9a-447c-9531-eae4d15bf0eb","keyword":"首次积分","originalKeyword":"首次积分"},{"id":"e126a434-3178-4e8f-b09f-a708a494c9c2","keyword":"(n+1)多重sine-Gordon方程","originalKeyword":"(n+1)维多重sine-Gordon方程"},{"id":"1c06e048-3217-4b6f-87b1-5da580e50513","keyword":"B(a)cklund变换","originalKeyword":"B(a)cklund变换"},{"id":"a07cc4d3-7a2e-448d-b264-68e2d17de447","keyword":"无穷序列类孤子新解","originalKeyword":"无穷序列类孤子新解"}],"language":"zh","publisherId":"lzdzxb201703008","title":"首次积分与(n+1)多重sine-Gordon方程无穷序列新解","volume":"34","year":"2017"},{"abstractinfo":"利用Lie群方法将(2+1)AKNS方程约化成(1+1)非线性偏微分方程.对约化方程应用扩展同宿测试法获得了AKNS方程一些新非行波精确解,这些结果丰富了该方程可积性内涵及(2+1)非线性波传播动力学行为.","authors":[{"authorName":"康晓蓉","id":"f2a7a2e9-7e63-43c0-9f67-daf598ed398d","originalAuthorName":"康晓蓉"},{"authorName":"鲜大权","id":"8b853925-8e81-4092-baa2-c189e89c6d7f","originalAuthorName":"鲜大权"}],"doi":"10.3969/j.issn.1007-5461.2013.06.006","fpage":"678","id":"42b45b90-d28f-40d4-89c1-267fb167be64","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"465a9ae3-1da3-44b4-a203-53d83e1a8813","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"170acd85-1a26-4b4d-896a-13dab6b284bd","keyword":"(2+1)AKNS方程","originalKeyword":"(2+1)维AKNS方程"},{"id":"54612d67-3c5b-420d-96b2-88ddb69583ef","keyword":"Lie群方法","originalKeyword":"Lie群方法"},{"id":"b504e614-95b8-4830-bc60-0a7f91dc7ad4","keyword":"扩展同宿测试法","originalKeyword":"扩展同宿测试法"},{"id":"d31959f6-e799-454b-a8c7-2eccb30444c6","keyword":"非行波精确解","originalKeyword":"非行波精确解"}],"language":"zh","publisherId":"lzdzxb201306006","title":"(2+1)AKNS方程对称约化和新非行波精确解","volume":"30","year":"2013"}],"totalpage":22700,"totalrecord":226994}