{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以整体炭毡为预制体,采用化学气相渗透(CVI)和树脂压力浸渍-常压炭化(PIC)相结合的工艺进行了复合致密,制备了整体毡基炭/炭(C/C)复合材料.通过对不同热处理工艺下材料的轴向热膨胀行为测试,结果表明:当热处理温度从1800℃升至2500℃时,材料1000℃的热膨胀系数(CTE)由3.30×10-6/℃降低到3.00×10-6/℃;当热处理次数由1次增至2次时,材料1000℃的热膨胀系数由2.28×10-6/℃降低为2.10× 10-6/℃.同时发现,当孔隙率相差84%时,热膨胀系数降低约24%.通过研究认为,热处理改变了C/C材料的微观结构,增强了材料石墨化的程度,提高了开口气孔率,可以通过合适的热处理工艺,降低材料的热膨胀系数,提高材料的热稳定性.","authors":[{"authorName":"李艳","id":"99455185-790d-4501-a9e5-871e6c5e90a0","originalAuthorName":"李艳"},{"authorName":"崔红","id":"134d03c1-a524-4750-8be0-35780bbbfae1","originalAuthorName":"崔红"},{"authorName":"嵇阿琳","id":"47479c7d-e9b0-4761-896f-f30b9a65ef71","originalAuthorName":"嵇阿琳"},{"authorName":"黄剑","id":"87793e62-21b7-4c72-9677-b757e35d245e","originalAuthorName":"黄剑"},{"authorName":"黄寒星","id":"904fbcb4-978c-4940-81e5-34d532db11f8","originalAuthorName":"黄寒星"}],"doi":"","fpage":"25","id":"15c96452-a4d2-4156-aace-85de719ed5a5","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7260cc10-3963-4246-beef-16365ec77b66","keyword":"热处理","originalKeyword":"热处理"},{"id":"be649289-1d97-4524-9b5b-207626bc5d5a","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"887cb412-f217-4168-899f-369a1c778019","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"8189fda6-9b59-41c9-8cb4-fc6e35ffc503","keyword":"开口气孔率","originalKeyword":"开口气孔率"}],"language":"zh","publisherId":"cldb201212008","title":"热处理对C/C复合材料热膨胀行为的影响","volume":"26","year":"2012"},{"abstractinfo":"介绍了利用Accupyc1330全自动真密度分析仪测定定形材料显气孔率及闭口气孔率的原理与方法,并与现行国标GB/T2997-2000的浸液法进行了对比.结果表明,采用该方法测定致密定形耐火制品具有数据可靠、快速、人为影响因素小等特点.","authors":[{"authorName":"黄青","id":"ce513e62-65a9-4b95-8a42-c9fac3f528f4","originalAuthorName":"黄青"},{"authorName":"李楠","id":"855782bb-aa6d-437f-9be7-79c855a5c047","originalAuthorName":"李楠"}],"doi":"10.3969/j.issn.1001-1935.2012.04.020","fpage":"314","id":"3aad279d-4cfa-4dcd-8ecf-1d36a86b3ec0","issue":"4","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"08307ab3-c614-491b-8b5d-fd96f1f7c4f2","keyword":"显气孔率","originalKeyword":"显气孔率"},{"id":"bdbcfa84-41d5-4e3f-ad56-bec2f35e1744","keyword":"闭口气孔率","originalKeyword":"闭口气孔率"},{"id":"0699e7d6-e2c7-4918-8219-be4c68a96b3b","keyword":"气体置换法","originalKeyword":"气体置换法"},{"id":"2b759326-c7a1-4b52-b1b3-e8f5935c5851","keyword":"浸液法","originalKeyword":"浸液法"}],"language":"zh","publisherId":"nhcl201204020","title":"气体置换法测定致密定形耐火制品显气孔率和闭口气孔率","volume":"46","year":"2012"},{"abstractinfo":"介绍了轻质砖显气孔率的试验方法,并引入了表观密度的概念,此方法避免了测量试样饱和重的过程,减少了试验过程对试验结果的影响.","authors":[{"authorName":"高帅","id":"cbd4e7d7-3654-46fb-b538-bcf921a321a6","originalAuthorName":"高帅"},{"authorName":"马明锴","id":"5bdc9e34-b7a2-41b4-8861-b95d5849fcb5","originalAuthorName":"马明锴"}],"doi":"10.3969/j.issn.1000-7571.2004.z1.085","fpage":"290","id":"e1a9588b-a40a-4b3c-abd8-0151f4455af2","issue":"z1","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"a5b0431c-38c4-4c84-b5db-ecc1eb574b6b","keyword":"轻质砖","originalKeyword":"轻质砖"},{"id":"7b380d60-2436-49d4-a55c-c6bea565255c","keyword":"显气孔率","originalKeyword":"显气孔率"},{"id":"99b7ea2b-c6ef-437d-87a2-3d3dd87979b1","keyword":"体积密度","originalKeyword":"体积密度"},{"id":"a524432d-9cfe-4f6f-b053-2645c8dec34e","keyword":"表观密度","originalKeyword":"表观密度"}],"language":"zh","publisherId":"yjfx2004z1085","title":"轻质隔热砖显气孔率的测定方法","volume":"24","year":"2004"},{"abstractinfo":"主要研究了泡沫凝胶法中的各工艺因素如搅拌速度、浆体粘度和浆体密度对气孔率的影响,并结合起泡形成理论,进一步引入雷诺数(Re)来衡量气孔率的变化.研究发现无论是改变搅拌速度、浆体粘度还是浆体密度,只要Re相同,则气孔率相同,并且在气孔率和雷诺数之间还存在着定量的函数关系.","authors":[{"authorName":"肖群芳","id":"8b2364b9-07d7-4870-85a0-e3e13349b1ed","originalAuthorName":"肖群芳"},{"authorName":"宁晓山","id":"ee4484a7-5632-46d8-a9fd-4859e2cc08ca","originalAuthorName":"宁晓山"},{"authorName":"周和平","id":"5befd06b-577d-4d41-b93a-a7f95d4babc7","originalAuthorName":"周和平"},{"authorName":"杨磊","id":"51c50020-b07a-46d7-b1c0-f39b24e7d881","originalAuthorName":"杨磊"}],"doi":"","fpage":"982","id":"cbfa1c63-f0f5-4e68-bd10-215c8394e9f3","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"39afc642-17c5-4cc5-9299-9a6e8b752d99","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"f74dfb07-cecc-4162-b160-ab060f3c5702","keyword":"泡沫凝胶法","originalKeyword":"泡沫凝胶法"},{"id":"b378ccc5-3f38-4bb8-adc6-538020707bdd","keyword":"搅拌","originalKeyword":"搅拌"},{"id":"0c6bfdcf-58cd-4bb1-8047-330ed47b2ab6","keyword":"雷诺数","originalKeyword":"雷诺数"},{"id":"03877960-d540-4a94-a061-6bd6d1ab8f33","keyword":"气孔率","originalKeyword":"气孔率"}],"language":"zh","publisherId":"xyjsclygc200606033","title":"泡沫凝胶法制取陶瓷的气孔率影响因素研究","volume":"35","year":"2006"},{"abstractinfo":"以高铝矾土、硅灰为原料,玉米淀粉为造孔剂制备高气孔率莫来石,通过XRD、SEM等对产物物相、形貌进行表征,研究淀粉含量对显气孔率、体积密度和抗折强度的影响,及不同显气孔率的莫来石随温度变化的导热系数,建立体积密度、抗折强度与气孔率关系模型及非线性导热模型.结果表明:体积密度、抗折强度随气孔率增加而减小,并符合指数函数关系.导热系数随温度的升高而增大,实测值与非线性导热模型计算值吻合较好,非线性导热模型能够准确地反映高气孔率莫来石导热系数与温度、气孔率、平均孔径和热辐射等之间的关系.","authors":[{"authorName":"罗学维","id":"3a66ab7a-3346-4b77-88f5-b2431fed57c6","originalAuthorName":"罗学维"},{"authorName":"栗海峰","id":"3a7a522e-0d6a-4596-9c1f-cc41691360bd","originalAuthorName":"栗海峰"},{"authorName":"向武国","id":"fda5c683-3d3c-4cd1-a752-39f866145391","originalAuthorName":"向武国"},{"authorName":"袁惠","id":"88fd05a1-cf1a-4ade-b973-fe0a1b966968","originalAuthorName":"袁惠"},{"authorName":"程呈","id":"e3d8954a-cd52-4a6e-be80-4a87726c63f5","originalAuthorName":"程呈"},{"authorName":"沈绪根","id":"8481465d-cf7c-4613-b24f-a37c0c026eee","originalAuthorName":"沈绪根"},{"authorName":"严春杰","id":"b54607c8-9921-4892-826d-d806b18227eb","originalAuthorName":"严春杰"}],"doi":"10.15541/jim20140048","fpage":"1179","id":"f6ddc65e-2491-42ef-a49a-036c41d72466","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0b935eec-2f29-4677-942b-cff14eba74be","keyword":"高气孔率莫来石","originalKeyword":"高气孔率莫来石"},{"id":"03a0613b-5259-4725-9bdf-b25079271754","keyword":"制备","originalKeyword":"制备"},{"id":"5cc2f5dc-e154-4c57-a6d7-67bdf14de956","keyword":"导热模型","originalKeyword":"导热模型"},{"id":"8adda10e-c59e-4405-9838-2a9b35196a1c","keyword":"非线性","originalKeyword":"非线性"}],"language":"zh","publisherId":"wjclxb201411011","title":"高气孔率莫来石制备、性能及其非线性导热模型","volume":"29","year":"2014"},{"abstractinfo":"介绍了镁碳砖显气孔率和体积密度的测试原理及检测过程,分别采用蒸馏水和工业煤油作浸液,采用浸渍法测定了镁碳砖的显气孔率和体积密度,并对检测数据进行了对比.结果表明:不同浸液对镁碳砖体积密度的测定没有影响;用工业煤油作浸液由于其对石墨的润湿性比水好,对镁碳砖样块大气孔及毛细孔的浸渍饱和程度好,因此用工业煤油测得的显气孔率结果比用水作浸液结果高约14%,测得的结果更加科学、合理.","authors":[{"authorName":"张会兵","id":"f2582e5a-8e81-4e13-bcde-624ec2f6919e","originalAuthorName":"张会兵"},{"authorName":"王红磊","id":"140d2fce-390e-4483-ae44-93f32c00b5d0","originalAuthorName":"王红磊"},{"authorName":"鲍中诚","id":"d84d1904-8f0d-4144-94f6-41863405945c","originalAuthorName":"鲍中诚"},{"authorName":"李宝国","id":"ff82144e-31c7-4dba-be5b-505c5ed0278c","originalAuthorName":"李宝国"}],"doi":"10.3969/j.issn.1001-1935.2007.05.023","fpage":"396","id":"2c498082-260d-46b9-a224-4fc92e714a1c","issue":"5","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"619a4393-41db-4131-aa91-71ca804dcd64","keyword":"浸液","originalKeyword":"浸液"},{"id":"6fc15910-4c80-475b-80a4-b56ed4e3284c","keyword":"显气孔率","originalKeyword":"显气孔率"},{"id":"df0a4bec-526e-4870-8a51-bb66d06682ca","keyword":"体积密度","originalKeyword":"体积密度"},{"id":"b02619a0-0efd-4c0c-9dca-8c829d36dc39","keyword":"镁碳砖","originalKeyword":"镁碳砖"}],"language":"zh","publisherId":"nhcl200705023","title":"浸液对镁碳砖显气孔率和体积密度测定的影响","volume":"41","year":"2007"},{"abstractinfo":"研究了陶瓷粘结剂含量、碳化硅颗粒粒径以及烧结温度对高温气体过滤用碳化硅多孔陶瓷抗弯强度和气孔率的影响. 利用X射线衍射测试了多孔陶瓷烧结后的物相组成. 陶瓷粘结剂含量的增加使碳化硅多孔陶瓷的气孔率快速下降, 在陶瓷粘结剂含量15wt%时, 碳化硅多孔陶瓷可具有较高的气孔率(37.5%)和抗弯强度(27.63MPa). 随着碳化硅颗粒粒径从300?m减少到87um, 碳化硅多孔陶瓷的气孔率和抗弯强度可同时提高, 气孔率从35.5%增加到了42.4%, 而抗弯强度从19.92MPa增加到了25.18MPa. 碳化硅多孔陶瓷的烧结温度从1300℃增加到1400℃过程中, 其气孔率从38.7%迅速下降到35.4%, 而其抗弯强度一直在27MPa左右, 没有大幅变化, 所以该多孔陶瓷的烧结温度应该选在陶瓷粘结剂熔点(1300℃)附近, 不宜过高.","authors":[{"authorName":"李俊峰","id":"b70e8858-ea26-4fe4-a9cf-0a4f03ff9bbc","originalAuthorName":"李俊峰"},{"authorName":"林红","id":"b333a923-76f2-48cf-8de8-e7ab96a27d96","originalAuthorName":"林红"},{"authorName":"李建保","id":"e9da611c-234d-4b51-891b-9a2e4c935390","originalAuthorName":"李建保"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00944","fpage":"944","id":"581933b9-5e55-43ff-b849-ddc67a502e41","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9e8f1ec7-bfd2-4e27-9f8a-3c75eb333250","keyword":"碳化硅多孔陶瓷","originalKeyword":"碳化硅多孔陶瓷"},{"id":"909bd001-cbd0-42f8-b5ee-c3f638c13aec","keyword":" filtration","originalKeyword":" filtration"},{"id":"5686bc0d-f16e-48af-bd34-0d45cb4af196","keyword":" flexural strength","originalKeyword":" flexural strength"},{"id":"b5b53435-7cf5-4cc1-82b5-e6544dc22a73","keyword":" porosity","originalKeyword":" porosity"}],"language":"zh","publisherId":"1000-324X_2011_9_15","title":"碳化硅多孔陶瓷气孔率和强度影响因素","volume":"26","year":"2011"},{"abstractinfo":"研究了陶瓷粘结剂含量、碳化硅颗粒粒径以及烧结温度对高温气体过滤用碳化硅多孔陶瓷抗弯强度和气孔率的影响.利用X射线衍射测试了多孔陶瓷烧结后的物相组成.陶瓷粘结剂含量的增加使碳化硅多孔陶瓷的气孔率快速下降,在陶瓷粘结剂含量15wt%时,碳化硅多孔陶瓷可具有较高的气孔率(37.5%)和抗弯强度(27.63MPa).随着碳化硅颗粒粒径从300μm减少到87μm,碳化硅多孔陶瓷的气孔率和抗弯强度可同时提高,气孔率从35.5%增加到了42.4%,而抗弯强度从19.92MPa增加到了25.18MPa.碳化硅多孔陶瓷的烧结温度从1300℃增加到1400℃ 过程中,其气孔率从38.7%迅速下降到35.4%,而其抗弯强度一直在27MPa左右,没有大幅变化,所以该多孔陶瓷的烧结温度应该选在陶瓷粘结剂熔点(1300℃)附近,不宜过高.","authors":[{"authorName":"李俊峰","id":"cc532c9a-cbc8-45ab-a3e6-7a45c6daf3cf","originalAuthorName":"李俊峰"},{"authorName":"林红","id":"9ba07469-31be-4bdd-a037-259602ad43d4","originalAuthorName":"林红"},{"authorName":"李建保","id":"5b761dab-ff0c-4789-8618-396e89574f1a","originalAuthorName":"李建保"}],"doi":"10.3724/SP.J.1077.2011.00944","fpage":"944","id":"f1c4474c-e65f-4210-b83d-84045ee45ebe","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"62dc34f5-cbdf-47ab-a716-6093ff0cbd5e","keyword":"碳化硅多孔陶瓷","originalKeyword":"碳化硅多孔陶瓷"},{"id":"08c103cc-cefb-4e81-bb5d-de3de00851e9","keyword":"过滤","originalKeyword":"过滤"},{"id":"701611c3-712e-4415-b0b5-f66cd3516fb4","keyword":"抗弯强度","originalKeyword":"抗弯强度"},{"id":"2a134c30-800e-483b-9fbe-75ace0b543dd","keyword":"气孔率","originalKeyword":"气孔率"}],"language":"zh","publisherId":"wjclxb201109010","title":"碳化硅多孔陶瓷气孔率和强度影响因素","volume":"26","year":"2011"},{"abstractinfo":"采用真空排水法测量了焦炭显气孔率。单因素试验表明,过程参数真空度、静置时间以及吸水时间对测量结果均有影响。通过正交试验发现,吸水时间对焦炭显气孔率的测量结果影响最小,静置时间次之,真空度影响最大。最终确定真空排水法的最佳试验参数为:真空度0.075MPa、静置时间5min、吸水时间10min。","authors":[{"authorName":"吴小兵,张建良,孔德文,白亚楠,高冰","id":"9435ab67-8b2d-45bc-a3bd-57f14afc25bd","originalAuthorName":"吴小兵,张建良,孔德文,白亚楠,高冰"}],"categoryName":"|","doi":"","fpage":"59","id":"04721c63-9674-440d-9091-ae6199a52488","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"3c8efed5-051c-4be7-8603-9d6d26d47320","keyword":"焦炭 ","originalKeyword":"焦炭 "},{"id":"d0ce49ae-a0e7-44d6-a349-be4f76f54764","keyword":" porosity ","originalKeyword":" porosity "},{"id":"7e4ae3ea-6022-4ea1-a5df-04a8763aea4d","keyword":" measurement ","originalKeyword":" measurement "},{"id":"e5c89c86-0b86-4751-b5c2-ff79dbf6d0a9","keyword":" accuracy","originalKeyword":" accuracy"}],"language":"zh","publisherId":"1001-0963_2012_10_9","title":"焦炭显气孔率测量过程参数的研究","volume":"24","year":"2012"},{"abstractinfo":"采用真空排水法测量了焦炭显气孔率.单因素试验表明,过程参数真空度、静置时间以及吸水时间对测量结果均有影响.通过正交试验发现,吸水时间对焦炭显气孔率的测量结果影响最小,静置时间次之,真空度影响最大.最终确定真空排水法的最佳试验参数为:真空度0.075 MPa、静置时间5 min、吸水时间10 min.","authors":[{"authorName":"吴小兵","id":"ed30e5d0-170b-45ce-88fe-5eaf3a65f580","originalAuthorName":"吴小兵"},{"authorName":"张建良","id":"0f7f33dd-639b-4c96-a388-59d26ffa2681","originalAuthorName":"张建良"},{"authorName":"孔德文","id":"692d6b1a-3c4e-40f3-a713-aa8486f669c1","originalAuthorName":"孔德文"},{"authorName":"白亚楠","id":"3f7806ec-4cdd-48ea-9c74-63a1bee845fa","originalAuthorName":"白亚楠"},{"authorName":"高冰","id":"a6b435e9-c7d4-4fde-825a-edc3c0f6eccf","originalAuthorName":"高冰"}],"doi":"","fpage":"59","id":"c6af8080-4bda-4634-8837-773df711ff42","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"a5a399bb-c355-49c9-9bde-bc993cb150f7","keyword":"焦炭","originalKeyword":"焦炭"},{"id":"e0781723-5fe8-484f-80ac-f7aaa9dbafda","keyword":"显气孔率","originalKeyword":"显气孔率"},{"id":"b941f6f5-110d-4220-a9c9-daec916194be","keyword":"测量","originalKeyword":"测量"},{"id":"bf3e88a2-2e6a-49eb-a9be-1ad56f2bb3fb","keyword":"准确度","originalKeyword":"准确度"}],"language":"zh","publisherId":"gtyjxb201210013","title":"焦炭显气孔率测量过程参数的研究","volume":"24","year":"2012"}],"totalpage":3497,"totalrecord":34961}