{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用低温湿化学还原法, 以Bi(NO3)3·5H2O和TeO2为原料, 通过乙二胺四乙酸(EDTA)参与调节使反应体系为中性, 以NaBH4为还原剂, 以表面活性剂Brij56(HO(CH2CH2O)10C16H33)为晶体生长调控剂, 制备了Bi2Te3纳米棒. 通过X射线衍射(XRD)、X射线荧光探针(XRF)、扫描电镜(SEM)、透射电镜(TEM)和高分辨透射电镜(HRTEM)对样品的组成和结构进行了分析, 同时初步探讨了Bi2Te3纳米棒的生长机理. 结果表明, 制备的Bi2Te3纳米棒直径在30nm左右, 长度在400nm左右, 具有单晶结构; 反应温度和Brij56的浓度对晶体形貌有较大的影响.
","authors":[{"authorName":"刘松秀","id":"902fa0a9-44a0-4495-8370-ca63d360f59f","originalAuthorName":"刘松秀"},{"authorName":"刘红梅","id":"f3496243-c45e-4db7-9946-c505bc27ed27","originalAuthorName":"刘红梅"},{"authorName":"黄开勋","id":"2712225d-5528-4f29-aa7b-04d6fc1bb74e","originalAuthorName":"黄开勋"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2008.00305","fpage":"305","id":"2f4b609a-5bee-48d7-85ee-809bc0432fd8","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c896997e-2583-4fe8-968b-349d03b8fce7","keyword":"化学还原法","originalKeyword":"化学还原法"},{"id":"034092a6-ad52-4000-9fc0-133aaa915b27","keyword":" Bi2Te3","originalKeyword":" Bi2Te3"},{"id":"50827e1e-fe24-4ed1-a12c-cf6b248dc47a","keyword":" single crystalline","originalKeyword":" single crystalline"},{"id":"347bcc55-72ce-40e3-8f2e-7751c51c18f9","keyword":" nanorod","originalKeyword":" nanorod"}],"language":"zh","publisherId":"1000-324X_2008_2_20","title":"低温湿化学还原法制备Bi2Te3单晶纳米棒","volume":"23","year":"2008"},{"abstractinfo":"采用低温湿化学还原法,以Bi(NO3)3·5H2O和TeO2为原料,通过乙二胺四乙酸(EDTA)参与调节使反应体系为中性,以NaBH4为还原剂,以表面活性剂Brij56(HO(CH2CH2O)10C16H33)为晶体生长调控剂,制备了Bi2Te3纳米棒.通过X射线衍射(XRD)、X射线荧光探针(XRF),扫描电镜(SEM)、透射电镜(TEM)和高分辨透射电镜(HRTEM)对样品的组成和结构进行了分析,同时初步探讨了Bi2Te3纳米棒的生长机理.结果表明,制备的Bi2We3纳米棒直径在30nm左右,长度在400nm左右,具有单晶结构;反应温度和Brij56的浓度对晶体形貌有较大的影响.","authors":[{"authorName":"刘松秀","id":"145bc132-0064-41c9-b0da-e29cd687b4d9","originalAuthorName":"刘松秀"},{"authorName":"刘红梅","id":"a7235726-5680-4bab-8aea-d1beb74ed9be","originalAuthorName":"刘红梅"},{"authorName":"黄开勋","id":"a2ffeb2d-6771-420f-b8c5-5980545d0288","originalAuthorName":"黄开勋"}],"doi":"10.3321/j.issn:1000-324X.2008.02.021","fpage":"305","id":"aa4df543-dd62-410e-82c3-b45fc1a51684","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"cde5f547-02cb-49ea-b86f-909c0f2891f4","keyword":"化学还原法","originalKeyword":"化学还原法"},{"id":"8701ea97-9fa7-42f3-89be-2b2931be61fc","keyword":"Bi2Te3","originalKeyword":"Bi2Te3"},{"id":"6dd7f6c0-f619-468e-9b2e-3ce3084bddc3","keyword":"单晶","originalKeyword":"单晶"},{"id":"2f42759a-367f-43c7-91de-9aedfb0ac467","keyword":"纳米棒","originalKeyword":"纳米棒"}],"language":"zh","publisherId":"wjclxb200802021","title":"低温湿化学还原法制备Bi2Te3单晶纳米棒","volume":"23","year":"2008"},{"abstractinfo":"刘文中,关于贝氏体形成机制,包括形核过程的文献很少被引述。作者(刘等)的主要论点为贝氏体铁素体以无扩散、非切变机制在奥氏体内贫碳区形核,并未引述形成贫碳区的必要条件。本文作者强调,在钢及铜合金中,不可能由Spinodal分解和位错偏聚形成贫溶质区。刘等的理念未得到先进理论观点和精细实验结果的支持。在刘文中,据此对临界核心大小和形核能的计算并无显著意义,期望青年学者对贝氏体相变机制作进一步研究。","authors":[{"authorName":"徐祖耀","id":"f5bc6b26-ec4d-45e7-a1da-067daa9d3115","originalAuthorName":"徐祖耀"}],"doi":"","fpage":"158","id":"66a9e9e8-09a0-408c-8c33-bc00aeff35c0","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5224cfe0-dd6d-4ccc-aac3-2bed80f388a5","keyword":"贝氏体形核","originalKeyword":"贝氏体形核"},{"id":"cae16aae-8a2b-43f5-9886-1ca5759c5972","keyword":"扩散机制","originalKeyword":"扩散机制"},{"id":"36bc9f8f-ee13-4c27-8020-c2c5b0dfca8f","keyword":"切变机制","originalKeyword":"切变机制"},{"id":"a3bb808d-ba7a-4c9a-90ff-d5e59a6a0f1a","keyword":"贫碳区","originalKeyword":"贫碳区"}],"language":"zh","publisherId":"jsrclxb201202033","title":"评刘宗昌等《贝氏体铁素体的形核》一文","volume":"33","year":"2012"},{"abstractinfo":"利用质子激发X射线荧光分析(PIXE)测试分析汝官瓷、张公巷窑青瓷和刘家门窑青瓷样品的主要化学组成,用多元统计判别分析方法对数据进行分析,以确定它们的分类和起源关系.结果表明:汝官瓷、张公巷窑青瓷和刘家门窑青瓷釉基本能很好的区分;但是胎区分得不是很理想,张公巷窑青瓷的胎可以和汝官瓷、刘家门窑青瓷胎很好的区分,汝官瓷胎和刘家门窑青瓷胎有个别样品不能分开.","authors":[{"authorName":"蔡敏敏","id":"bf1f4660-208a-4999-ac81-266bf48c5bcb","originalAuthorName":"蔡敏敏"},{"authorName":"李国霞","id":"f8d3a4dc-7472-4dd6-9382-9f4430feef58","originalAuthorName":"李国霞"},{"authorName":"赵维娟","id":"9572b140-eca3-4192-af6e-ab9fdb21502b","originalAuthorName":"赵维娟"},{"authorName":"李融武","id":"e2d1fb82-016c-4ae3-9ee6-0cabbe60a2a0","originalAuthorName":"李融武"},{"authorName":"赵文军","id":"ea875a05-c1f7-4a8f-b405-2005de7db87c","originalAuthorName":"赵文军"},{"authorName":"承焕生","id":"9ff5fa85-a1fb-4cd2-bdc3-3bd240fd6894","originalAuthorName":"承焕生"},{"authorName":"郭敏","id":"d4074d21-787e-429b-8123-a13fcf5ce433","originalAuthorName":"郭敏"}],"doi":"","fpage":"1363","id":"f1ea8842-b3fe-42a2-9557-aa4c186cac5a","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d281b6ff-a4b5-41d8-ad69-47236e801de5","keyword":"汝官瓷","originalKeyword":"汝官瓷"},{"id":"adf8b648-9625-4b38-96ff-ec6174d0c5d4","keyword":"张公巷窑青瓷","originalKeyword":"张公巷窑青瓷"},{"id":"3a61e23c-a3f8-43e6-84fc-1b7cd4edef5b","keyword":"刘家门窑青瓷","originalKeyword":"刘家门窑青瓷"},{"id":"494e2983-99cd-4c53-a919-4bfad5b7c54a","keyword":"判别分析","originalKeyword":"判别分析"}],"language":"zh","publisherId":"gsytb201206005","title":"汝官瓷、张公巷窑青瓷和刘家门窑青瓷的判别分析研究","volume":"31","year":"2012"},{"abstractinfo":"采用湿法球磨工艺,通过调整银粉和球的比例、球径大小、球磨时间制备出低松装密度片状银粉.该银粉的松装密度小于1.0 g/cm3,粒径大小可调,粉末的体积和比表面积大,已成功地应用于制备银浆,并可起到降低银含量,提高浆料粘度和导电性能的作用.","authors":[{"authorName":"李晓龙","id":"25c4280e-54fe-49dd-82c2-887eaf84390e","originalAuthorName":"李晓龙"},{"authorName":"黄富春","id":"1fc9dbba-07d4-4fce-b706-0d4515b1c722","originalAuthorName":"黄富春"},{"authorName":"李文琳","id":"6008e8bd-33fc-452d-997c-e2d1947f2ae3","originalAuthorName":"李文琳"},{"authorName":"赵玲","id":"840f7840-9658-43cd-9b3b-898a7b963266","originalAuthorName":"赵玲"},{"authorName":"陈伏生","id":"c8f077f9-1fc4-412b-abc7-f7673cea66eb","originalAuthorName":"陈伏生"}],"doi":"10.3969/j.issn.1004-0676.2012.01.004","fpage":"16","id":"49d89c85-24e3-4fd4-b613-ce648e95c1ef","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"8058b128-5dc7-4c0b-97a5-b4b0fe26399f","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"2b43ac94-938f-4a1e-8f32-4d26a6750e64","keyword":"片状银粉","originalKeyword":"片状银粉"},{"id":"013a6f13-b77b-4a64-9afa-584843c03cdd","keyword":"导电性能","originalKeyword":"导电性能"},{"id":"3f85c3cc-e3a4-4ef9-b9ce-e92c5e497e10","keyword":"银含量","originalKeyword":"银含量"},{"id":"71060ab6-b553-4b33-8bb1-2cde4d6480db","keyword":"混合银粉","originalKeyword":"混合银粉"},{"id":"5904b987-fee7-4932-aab7-b41eb2fe8192","keyword":"粘度","originalKeyword":"粘度"}],"language":"zh","publisherId":"gjs201201004","title":"低松装密度片状银粉的研究","volume":"33","year":"2012"},{"abstractinfo":"根据金属液凝固收缩理论和多孔介质中流体流动原理,建立了离心压力下Ti-Al 合金精密铸件中微观缩松缺陷预测的数学模型,采用该模型对Ti-Al 增压涡轮铸件进行模拟计算,并进行了实验验证。结果表明,数学模型能够合理反映离心转速、离心半径、温度梯度和冷却速度等重要因素对微观缩松的影响规律,数值模拟结果与实验结果相吻合。分析增压涡轮的计算结果表明,在涡轮轴向,温度梯度是影响微观缩松度如何分布的主要原因;在涡轮径向,温度梯度、冷却速度和离心半径的共同作用决定着微观缩松度的变化规律。提高温度梯度,降低冷却速度,充分利用离心压力对枝晶间补缩的有效作用,有利于减少涡轮内部的微观缩松,保证叶片和涡轮的组织致密性和力学性能。","authors":[{"authorName":"梁作俭","id":"d88e565a-b762-4764-b4fe-71f00456ab9f","originalAuthorName":"梁作俭"},{"authorName":"许庆彦","id":"d7aeb773-4e1e-47d2-bcc2-9e1fe6043f96","originalAuthorName":"许庆彦"},{"authorName":"李俊涛","id":"7a02decc-6604-456b-a1a9-18a635dd9d4d","originalAuthorName":"李俊涛"}],"categoryName":"|","doi":"","fpage":"278","id":"c9d91600-4227-4f29-9dbd-56aa75d5d5fa","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9ac44955-63da-49cc-9842-e67d8eceaa99","keyword":"Ti-Al","originalKeyword":"Ti-Al"},{"id":"fc01c7d3-713c-48a2-acd7-c2c48d91dea6","keyword":"null","originalKeyword":"null"},{"id":"04346c3f-400c-4553-8052-add4528748ce","keyword":"null","originalKeyword":"null"},{"id":"9e6799d6-d713-4246-b5bf-ac4f38ee6a9a","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_3_21","title":"Ti-Al合金精密铸件微观缩松预测","volume":"39","year":"2003"},{"abstractinfo":"根据金属液凝固收缩理论和多孔介质中流体流动原理,建立了离心压力下Ti-Al合金精密铸件中微观缩松缺陷预测的数学模型,采用该模型对Ti-Al增压涡轮铸件进行模拟计算,并进行了实验验证.结果表明,数学模型能够合理反映离心转速、离心半径、温度梯度和冷却速度等重要因素对微观缩松的影响规律,数值模拟结果与实验结果相吻合.分析增压涡轮的计算结果表明,在涡轮轴向,温度梯度值是影响微观缩松度如何分布的主要原因;在涡轮径向,温度梯度、冷却速度和离心半径的共同作用决定着微观缩松度的变化规律.提高温度梯度,降低冷却速度,充分利用离心压力对枝晶间补缩的有效作用,有利于减少涡轮内部的微观缩松,保证叶片和涡轮的组织致密性和力学性能.","authors":[{"authorName":"梁作俭","id":"668e3ca5-1c3a-4a86-ad13-3441154d3dac","originalAuthorName":"梁作俭"},{"authorName":"许庆彦","id":"17955dac-843d-41f2-88c3-fdca487de134","originalAuthorName":"许庆彦"},{"authorName":"李俊涛","id":"951236b0-b688-44ca-8ac5-f539b9f35d35","originalAuthorName":"李俊涛"},{"authorName":"李世琼","id":"086e7597-ada6-48eb-a758-543a05d47681","originalAuthorName":"李世琼"},{"authorName":"张继","id":"3bd3e630-8181-4b3f-8d44-0db3915f4775","originalAuthorName":"张继"},{"authorName":"柳百成","id":"80913066-48b0-4afb-b333-614adb042828","originalAuthorName":"柳百成"},{"authorName":"仲增墉","id":"9a1c6924-0623-467c-a0a2-65db7752a0e7","originalAuthorName":"仲增墉"}],"doi":"10.3321/j.issn:0412-1961.2003.03.011","fpage":"278","id":"8fbfbd17-e039-4f1f-893a-789a15efd87a","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7a088519-ab01-4cf7-ad12-85b965213b7b","keyword":"Ti-Al合金","originalKeyword":"Ti-Al合金"},{"id":"cfa3bc21-53b8-481d-a611-55f331c10ad7","keyword":"微观缩松","originalKeyword":"微观缩松"},{"id":"0c03561f-ac52-40b2-8750-683cb037b4c4","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"c5752d57-2eab-4a3d-aa11-ff554a19b7c7","keyword":"精密铸件","originalKeyword":"精密铸件"}],"language":"zh","publisherId":"jsxb200303011","title":"Ti-Al合金精密铸件微观缩松预测","volume":"39","year":"2003"},{"abstractinfo":"研究了用简单分离工艺从造纸废液中分离松浆油制备家具底漆及面漆新工艺,对影响其底漆性能的各种因素进行了较为详细的研究,确定了最佳工艺条件.研究结果表明,采用松浆油与桐油进行加成反应,酯化温度为220~240℃时所得底漆外观平整光滑,实干时间240min.新工艺制备的家具底漆及面漆性能良好,废液分离工艺简单,具有良好的经济效益与环保效益.","authors":[{"authorName":"胡波年","id":"051adf09-f004-4941-ac4d-4405cd035f30","originalAuthorName":"胡波年"},{"authorName":"胡汉祥","id":"fca05a09-3299-4d42-8f20-9ae419b70a5c","originalAuthorName":"胡汉祥"},{"authorName":"李爱阳","id":"c6e5f4b5-af8e-4bb6-8e1f-fc605964baba","originalAuthorName":"李爱阳"}],"doi":"10.3969/j.issn.1001-3660.2004.06.020","fpage":"53","id":"1ce17b68-b667-4bdc-ab76-6233c1e744f8","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"3871571e-bd74-4e65-8bd8-af9cd0d69024","keyword":"松浆油","originalKeyword":"松浆油"},{"id":"a28c4078-728b-431d-a4c4-a7c113ed9215","keyword":"桐油","originalKeyword":"桐油"},{"id":"a576ef4f-4fa8-4ed2-b4fd-0769f420646f","keyword":"造纸废液","originalKeyword":"造纸废液"},{"id":"1ff8dfca-3d77-445c-9367-16864db83a2f","keyword":"底漆","originalKeyword":"底漆"}],"language":"zh","publisherId":"bmjs200406020","title":"利用造纸废液中松浆油制底漆","volume":"33","year":"2004"},{"abstractinfo":"本文采用质子激发X射线荧光分析(PIXE)技术测试了34个汝官瓷样品、30个蓝色系列钧官瓷样品(不含红釉系列)和17个刘家门窑青瓷样品的主量化学组成含量,根据这些样品的主量化学组成含量数据,应用多元统计分析方法进行分析.结果表明:汝官瓷、钧官瓷和刘家门窑青瓷的釉样品能够较好的区分开;但是3种瓷胎并不能很好的分开.","authors":[{"authorName":"肖朋飞","id":"6c5bc42f-0f99-48b4-b412-749a9ae0e046","originalAuthorName":"肖朋飞"},{"authorName":"赵红梅","id":"27edfee9-f617-4a36-af10-1a11a2aec85c","originalAuthorName":"赵红梅"},{"authorName":"李融武","id":"019184bd-8770-4aad-9618-4e2e6642f646","originalAuthorName":"李融武"},{"authorName":"赵文军","id":"6c10bb80-2026-4274-9965-bf564b102cc6","originalAuthorName":"赵文军"},{"authorName":"李国霞","id":"6f63b95a-67cb-4f68-b4b5-7c0b6f8f38e7","originalAuthorName":"李国霞"},{"authorName":"赵维娟","id":"ee11e4bc-a40c-4de3-90c4-e81dd16a55e3","originalAuthorName":"赵维娟"},{"authorName":"承焕生","id":"528f9874-c9c9-4258-bc3c-5a0d9ea8b362","originalAuthorName":"承焕生"}],"doi":"","fpage":"312","id":"3b352bdd-7627-42ad-a3b3-45e88dc561eb","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"080b7cee-826f-4a82-af62-9feed6531e66","keyword":"汝官瓷","originalKeyword":"汝官瓷"},{"id":"684a6128-65b6-45ce-be61-e74720b4c844","keyword":"钧官瓷","originalKeyword":"钧官瓷"},{"id":"14ccb09f-07d1-4f4b-bb41-c0ad3eea1fa0","keyword":"刘家门窑青瓷","originalKeyword":"刘家门窑青瓷"},{"id":"4b254520-d0a1-406e-a9ef-92267cd23fb0","keyword":"PIXE","originalKeyword":"PIXE"},{"id":"12b26595-24a4-4ea9-b303-ae046a74c72d","keyword":"因子分析","originalKeyword":"因子分析"}],"language":"zh","publisherId":"gsytb201102013","title":"汝官瓷、钧官瓷和刘家门窑青瓷的多元统计分析","volume":"30","year":"2011"},{"abstractinfo":"采用松装烧结法制备多孔铜,研究了材料密度、孔隙率、拉伸强度与烧结温度的关系。结果表明,在烧结时间均为5 h时,随着铜多孔材料的烧结温度由830℃升高至860、890℃,材料密度逐渐增大、孔隙率逐渐降低,而拉伸强度随之提高;一定尺寸的物质可以顺利通过铜多孔材料,这主要是由于该材料的孔隙具有连通性。","authors":[{"authorName":"赵红梅","id":"47232ae9-6069-404a-b73b-556aba498322","originalAuthorName":"赵红梅"},{"authorName":"付欣","id":"7e9ceeb5-c901-4c24-8468-237e050dc202","originalAuthorName":"付欣"},{"authorName":"贺勇","id":"2eb6b38b-972b-4cad-8872-23c416186f6d","originalAuthorName":"贺勇"},{"authorName":"张全孝","id":"fe1c1028-dff9-41f4-8c1c-74d51446abdf","originalAuthorName":"张全孝"},{"authorName":"贾万明","id":"bc2f9e84-e01f-451d-bb81-dc0fba720ca2","originalAuthorName":"贾万明"},{"authorName":"苏继红","id":"0042e4ad-21f3-4174-ae69-06eb5eed97ab","originalAuthorName":"苏继红"}],"doi":"","fpage":"79","id":"49d51db4-b5f2-40da-8f0e-855ab4f4c075","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"805d5611-d3f1-4bca-b4fb-c019238573d0","keyword":"铜多孔材料","originalKeyword":"铜多孔材料"},{"id":"a90b3ff8-e500-4d28-affe-b9ee4e1469d2","keyword":"松装烧结","originalKeyword":"松装烧结"},{"id":"ebf0ff56-3f78-4cb7-9154-7fdeb8deb11e","keyword":"孔隙率","originalKeyword":"孔隙率"}],"language":"zh","publisherId":"bqclkxygc201306027","title":"松装烧结法制备多孔铜","volume":"","year":"2013"}],"totalpage":36,"totalrecord":358}