{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"由于孔的存在,必然降低结构的强度.因此,对应力场进行准确的分析是非常必要的,特别是孔复合材料在压缩荷载作用下的应力分析更为重要.对于圆孔的复合材料,文中运用复变函数理论中保角映射的方法解决了边界条件问题;采用所建立的数学模型对圆孔的复合材料在不同方向压缩荷载作用下进行了较为全面的应力仿真分析;对不同情况下孔边应力分布进行了比较.","authors":[{"authorName":"李成","id":"2ce30557-e174-4e61-8800-04d6eba0e7a8","originalAuthorName":"李成"},{"authorName":"铁瑛","id":"628fd63c-1f48-4649-9208-0d2ea9472886","originalAuthorName":"铁瑛"},{"authorName":"郑艳萍","id":"31bfe66d-6e73-4138-b788-3096b326402a","originalAuthorName":"郑艳萍"}],"doi":"","fpage":"150","id":"9f0f2da4-2b59-4e05-b870-0a1539d24e25","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9f147ff4-7f98-4f76-9132-33bd63058328","keyword":"复变应力函数","originalKeyword":"复变应力函数"},{"id":"e6f062cc-e9f0-4842-bd31-8b22ddf76aa5","keyword":"圆孔正交各向异性","originalKeyword":"含圆孔正交各向异性板"},{"id":"779a7185-2029-482f-a658-bc84b6560bad","keyword":"面内压缩荷载","originalKeyword":"面内压缩荷载"},{"id":"18bf63e3-f271-4514-851c-e8e12e9e4bfc","keyword":"不同杨氏模量","originalKeyword":"不同杨氏模量"},{"id":"80bbd5f0-6eb4-4349-ae06-c5160b17efb0","keyword":"仿真分析","originalKeyword":"仿真分析"}],"language":"zh","publisherId":"gfzclkxygc201007040","title":"圆孔树脂基复合材料在面内压缩荷载作用下的应力场计算","volume":"26","year":"2010"},{"abstractinfo":"对于实际工程中常见的孔结构,建立利用保角映射原理对圆孔树脂基复合材料的孔边应力进行准确分析的方法,采用所给出的方法可以得到孔边在板边外荷载作用下的应力分布,然后采用点应力破坏准则对进行全面的强度校核.文中不仅对带有圆形孔的复合材料,在拉应力作用情况下的孔边应力场进行了计算,而且对外荷载、孔口尺寸、某点距孔边的距离以及材料性质等因素对应力的影响进行了较为全面的仿真分析.","authors":[{"authorName":"李成","id":"07dffb2f-a24f-4a9d-8166-7fb71e8b7ea5","originalAuthorName":"李成"},{"authorName":"铁瑛","id":"8270ba77-3f49-400e-966f-48ab9ff21e67","originalAuthorName":"铁瑛"},{"authorName":"郑艳萍","id":"6b3f58f8-c951-41ef-982a-a05326798957","originalAuthorName":"郑艳萍"}],"doi":"","fpage":"163","id":"04e6c622-08a4-4d06-baeb-1f30543f8a30","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"4fb02585-614c-41af-a84e-058966ee31a4","keyword":"孔复合材料结构","originalKeyword":"含孔复合材料结构"},{"id":"1f4ed0af-2a81-4f7d-91a5-c0fb4100676a","keyword":"点应力破坏准则","originalKeyword":"点应力破坏准则"},{"id":"db7fd892-6fa3-4f41-b535-885829cd5403","keyword":"强度","originalKeyword":"强度"},{"id":"42b5f94f-9465-4802-a1d1-7ba4b440180a","keyword":"应力场","originalKeyword":"应力场"}],"language":"zh","publisherId":"gfzclkxygc201010043","title":"基于点应力破坏准则的圆孔树脂基正交各向异性的强度计算","volume":"26","year":"2010"},{"abstractinfo":"在工程实际当中,复合材料构件由于环境影响在制造、运输或使用过程中会有孔洞,也会产生微小的缺陷和裂纹.这些孔洞,缺陷和裂纹在外界载荷作用下通常会引起其周围区域的应力集中,这些因素都会削弱结构的静强度和疲劳强度.针对圆孔正交各向异性,根据非均质各向异性弹性理论对孔边进行应力分析,提出积分方程法求解方案.通过保角映射方法建立精确的边界条件,解决了复杂孔形的边界条件问题,按照所建立的数学模型对含有圆形孔的复合材料进行应力分析,得到了精确解析解.对不同方向的载荷作用情况,以及他们对孔边应力集中系数的影响进行探讨,同含有圆孔的均质材料孔边的应力场进行比较.","authors":[{"authorName":"李成","id":"ce057e78-6ec7-4653-bacb-986bfdaf441d","originalAuthorName":"李成"},{"authorName":"郑艳萍","id":"8e018b33-2997-498f-a4a2-c2cb3dbe7895","originalAuthorName":"郑艳萍"},{"authorName":"闫志华","id":"e434f202-2bdc-4162-8c47-d8b2b48bbb3f","originalAuthorName":"闫志华"}],"doi":"10.3969/j.issn.1004-244X.2007.02.001","fpage":"1","id":"b9f96283-59d8-4740-a625-ab5973b9bcb2","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"206817f7-d122-44b4-bdfd-1358d7df6082","keyword":"圆孔","originalKeyword":"圆孔"},{"id":"2a608672-552d-44b4-81ae-8df87960bfc0","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"0cc36316-7ff6-47c3-8671-c3040a1166d4","keyword":"积分方程","originalKeyword":"积分方程"},{"id":"e987e97a-55a3-430a-9f2b-ad8a9a400723","keyword":"精确的边界条件","originalKeyword":"精确的边界条件"}],"language":"zh","publisherId":"bqclkxygc200702001","title":"不同方向载荷作用下圆孔正交各向异性平面应力问题的弹性解","volume":"30","year":"2007"},{"abstractinfo":"用近似解析方法推导出拉伸正交各向异性有限宽偏心圆孔的应力集中系数的显式表达式,除了比较极端的情况外,该式的精度较好.误差估计基于与有限元分析结果的比较.当偏心度取为零,即变为有限宽中心圆孔时,此简化情况下的应力集中系数表达式与文献值和有限元解吻合得很好.推导的方法虽然简单,但结果比较理想.利用所推导的表达式可以求解各向异性材料的应力集中系数问题.","authors":[{"authorName":"王启智","id":"1be90645-af02-42bd-96ab-f59091520870","originalAuthorName":"王启智"},{"authorName":"宋小林","id":"2407d0c7-54e8-417f-9616-e950f2ed7b9b","originalAuthorName":"宋小林"}],"doi":"10.3321/j.issn:1000-3851.2003.06.016","fpage":"80","id":"a16898fd-d266-43c1-9b5d-e44359ee9c23","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"c2f7d40f-c523-4086-a9f0-f2ab06fa3702","keyword":"拉伸正交异性有限宽","originalKeyword":"拉伸正交异性有限宽板"},{"id":"0aa7ba69-1126-4595-aa68-3ae940be9cb2","keyword":"偏心圆孔","originalKeyword":"偏心圆孔"},{"id":"d24f2584-6bd7-40b4-ae8e-5219e964d0c2","keyword":"中心圆孔","originalKeyword":"中心圆孔"},{"id":"df0e78e8-cac9-4828-9777-ed8c15cc5626","keyword":"应力集中系数","originalKeyword":"应力集中系数"},{"id":"f9a3afce-83a3-4c43-aba4-44ec26b09b66","keyword":"显式表达式","originalKeyword":"显式表达式"}],"language":"zh","publisherId":"fhclxb200306016","title":"拉伸正交各向异性有限宽偏心圆孔的应力集中系数表达式","volume":"20","year":"2003"},{"abstractinfo":"孔结构在机械结构、装备中随处可见。针对圆孔的树脂基复合材料,采用解析法对几种常见荷载对孔边应力场的影响进行分析。对两个主方向的杨氏模量的变化对孔边应力的影响进行仿真分析,并对在不同荷载作用下,各向异性度对孔边应力场的影响进行比较。通过计算可知,随着杨氏模量的增大,孔边应力也增大,且随杨氏模量E1增大所引起的孔边应力增加的幅度要大于由E2增大所引起的孔边应力增加的幅度。在弯矩作用下,材料的各向异性性质对孔边应力场影响的程度相对于拉、压载荷受力状态要大一些。","authors":[{"authorName":"李成","id":"3c947147-f6ae-434b-bbed-4c93a379521b","originalAuthorName":"李成"},{"authorName":"铁瑛","id":"53c8763c-b49e-4e63-816e-6261493b44f2","originalAuthorName":"铁瑛"},{"authorName":"赵华东","id":"da5d303a-4c08-4695-a2e1-921b7b659abb","originalAuthorName":"赵华东"}],"doi":"","fpage":"155","id":"02e61c30-6a92-4023-853c-3b4190a65f5f","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a851fd09-7892-4e90-9915-3c67130ab40c","keyword":"孔结构","originalKeyword":"含孔结构"},{"id":"9803c455-37ca-427b-bef8-edaeb52b3b84","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"4e90147e-c054-4eea-ad0d-376452eb0c1b","keyword":"各向异性度","originalKeyword":"各向异性度"},{"id":"c93c0e7a-efbd-4968-a101-b86dca3f317f","keyword":"应力分布","originalKeyword":"应力分布"},{"id":"27f8a12d-7faa-4d50-abba-8c2b38b953a4","keyword":"结构优化","originalKeyword":"结构优化"}],"language":"zh","publisherId":"gfzclkxygc201112055","title":"不同荷载作用下各向异性度对树脂基正交各向异性圆孔孔边应力分布的影响","volume":"27","year":"2011"},{"abstractinfo":"通过引入适当的Westergaard应力函数,采用复变函数方法和待定系数法对周期性裂纹正交各向异性纤维增强复合材料的Ⅰ型、Ⅱ型问题中裂纹尖端附近的应力场进行了力学分析.在远处对称载荷与斜对称载荷作用下,先给出Ⅰ型、Ⅱ型问题在裂纹尖端处的应力强度因子,然后导出用应力强度因子表示的Ⅰ型、Ⅱ型裂纹问题应力场的解析表达式.此外,应力场大小与材料常数有关,这是正交各向异性材料不同于各向同性材料的特征.由于裂纹的周期分布,应力强度因子的大小取决于形状因子.结果表明,形状因子随着裂纹长度的增加而增大,随着裂纹间距的增大而逐渐下降,当裂纹间距趋于无穷大时,退化为单个中心裂纹正交各向异性纤维增强复合材料的结果.","authors":[{"authorName":"郭俊宏","id":"5073db87-a389-4f06-b177-98da62da47bf","originalAuthorName":"郭俊宏"},{"authorName":"卢子兴","id":"15718b3f-8e1a-433e-8e9f-a68f26ce3bd2","originalAuthorName":"卢子兴"}],"doi":"","fpage":"162","id":"4944e44e-05d3-4232-9aee-f300ef874647","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"6ae6e6f8-e1d5-4cd8-83d1-31e11c737a96","keyword":"正交各向异性","originalKeyword":"正交各向异性板"},{"id":"470b69fd-02b2-4637-bb27-9d995572e826","keyword":"周期性裂纹","originalKeyword":"周期性裂纹"},{"id":"2f443615-e00b-4dbc-aa0f-ce0b74e9bbda","keyword":"Westergaard应力函数","originalKeyword":"Westergaard应力函数"},{"id":"4ea1fe8f-6b9a-4d72-9d38-02f0dac40c59","keyword":"应力强度因子","originalKeyword":"应力强度因子"},{"id":"6e813f8d-ecaa-4a1d-bf44-a02a1ca8809e","keyword":"应力场","originalKeyword":"应力场"}],"language":"zh","publisherId":"fhclxb201001028","title":"周期性裂纹正交各向异性平面问题的应力场分析","volume":"27","year":"2010"},{"abstractinfo":"对于不同边界条件下受切向均布随从力的特殊正交各向异性矩形,通过改变边长比,的失稳临界值发生变化.建立受切向均布随从力的矩形的运动微分方程,利用微分求积法得到复特征方程.通过求解复特征方程,得出矩形振动复频率与随从力的变化关系,以及边长比对失稳形式的影响.计算结果表明,固支能提高的固有频率;简支能降低的固有频率;自由边介于二者之间.对于cccc、cfcf、cfff以及csfs4种边界条件的特殊正交各向异性,当边长比β=a/b超过一定临界值时,在均布随从力作用下,其失稳形式从发散转为颤振.对于ssss,scsc及cses3种边界条件,无论β=a/b如何变化,其失稳形式保持发散不变.","authors":[{"authorName":"杨峰","id":"449ba6d2-4b9f-4701-b1b0-04ea2afe61b8","originalAuthorName":"杨峰"},{"authorName":"王忠民","id":"9721bdc5-8a09-44e8-b520-3458466abed8","originalAuthorName":"王忠民"},{"authorName":"韩玉强","id":"273612ec-aaf7-429b-ada0-5b51a48dd879","originalAuthorName":"韩玉强"}],"doi":"10.3969/j.issn.1003-0999.2012.04.001","fpage":"3","id":"539f7590-487f-4f81-ad23-535514dbfc9d","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"b1683159-d129-4023-8783-700ddb484334","keyword":"切向均布","originalKeyword":"切向均布"},{"id":"fc75133b-63e6-4de5-a0df-923dd9054cd6","keyword":"随从力","originalKeyword":"随从力"},{"id":"58fba4b9-616d-47ec-81f6-746cf35bddde","keyword":"特殊正交各向异性","originalKeyword":"特殊正交各向异性"},{"id":"f5353970-d603-45de-b378-4999f846b3da","keyword":"边长比","originalKeyword":"边长比"},{"id":"cfa169a4-0fe5-424a-90b8-fd0d46fd22e3","keyword":"颤振","originalKeyword":"颤振"},{"id":"0b4fd567-05ee-44e1-b49f-be34e4f3b289","keyword":"发散","originalKeyword":"发散"}],"language":"zh","publisherId":"blgfhcl201204001","title":"切向均布随从力作用下的特殊正交各向异性矩形振动特性","volume":"","year":"2012"},{"abstractinfo":"讨论了小孔法测量正交各向异性材料残余应力.以正交各向异性无限大板孔边应力场解析解为基础,导出了释放应变矩阵计算表达式,并用一个算例验证了该计算式的正确性.","authors":[{"authorName":"朱甫金","id":"71c47793-0694-4595-a10c-ec800d7d812b","originalAuthorName":"朱甫金"},{"authorName":"陶宝祺","id":"a655627d-51fa-4447-b2b2-a1707aa668a8","originalAuthorName":"陶宝祺"}],"doi":"10.3321/j.issn:1000-3851.1998.02.018","fpage":"0","id":"6656eb82-c629-49f4-bb44-5d25aee5cbda","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"45f6b24a-279c-4add-a23c-9de2562d5f1d","keyword":"小孔法","originalKeyword":"小孔法"},{"id":"fba5444b-de73-4c08-81fd-1d889c68bd22","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"b63c0866-0484-473d-bf60-7945f308a333","keyword":"正交各向异性","originalKeyword":"正交各向异性"},{"id":"2c919bec-714f-48f5-a564-028f7fc099ce","keyword":"释放应变矩阵","originalKeyword":"释放应变矩阵"}],"language":"zh","publisherId":"fhclxb199802018","title":"小孔法测量正交各向异性材料残余应力","volume":"15","year":"1998"},{"abstractinfo":"本文利用伽辽金法对局部损伤正交各向异性矩形薄板的屈曲问题进行了分析,得到了损伤薄板屈曲临界载荷的近似计算方法.数值分析结果表明,局部损伤对正交各向异性矩形薄板的屈曲临界载荷有较为明显的影响,在进行玻璃钢/复合材料薄板结构稳定性设计与校核时,必须予以考虑.","authors":[{"authorName":"李瑶","id":"1de680b3-a1c9-4fef-bb22-11081a6e387d","originalAuthorName":"李瑶"}],"doi":"10.3969/j.issn.1003-0999.2001.05.001","fpage":"3","id":"d347764a-18a5-49b0-89b4-632919dee74c","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"d9a8d7fa-e535-4b3a-9c36-08baf38c1d53","keyword":"正交各向异性矩形薄板","originalKeyword":"正交各向异性矩形薄板"},{"id":"574b7eec-e51f-4d2c-8150-26e0d73d9b24","keyword":"局部损伤","originalKeyword":"局部损伤"},{"id":"31c75c88-bd65-4ef6-a11f-183aac740eda","keyword":"屈曲","originalKeyword":"屈曲"},{"id":"92224611-6dad-4c02-9237-66d36547aa40","keyword":"伽辽金法","originalKeyword":"伽辽金法"}],"language":"zh","publisherId":"blgfhcl200105001","title":"局部损伤正交各向异性矩形薄板的屈曲","volume":"","year":"2001"},{"abstractinfo":"以矩形蜂窝为例,介绍了正交各向异性蜂窝填充的夹层蜂窝结构散热性能和散热一承载性能优化设计,给出了正交各向异性蜂窝相关系数的推导过程.从实际应用出发,针对常规以性能乘积形式构造的散热一承载性能指标对散热性能侧重程度的不足,给出了基于2种双层规划模型的非确定性设计方法,得到了旨在强调散热性能设计意图的散热-承载多目标优化问题的有效解集.这种方法对结构敏感参数较多的正交各向异性蜂窝填充结构的多功能优化设计非常有效.最后讨论了不同尺寸效应下的蜂窝最优结构参数.","authors":[{"authorName":"王博","id":"2e013b5a-d9b8-4e89-b360-0dcf8e98a31f","originalAuthorName":"王博"}],"doi":"10.3321/j.issn:1000-3851.2008.03.034","fpage":"202","id":"c862c630-f3f9-4d5b-a33a-eb50ee572b70","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"6f20ef44-2e20-4f30-8ef0-fa49a9ce750f","keyword":"多功能设计","originalKeyword":"多功能设计"},{"id":"9f19d69f-da21-497d-89f2-d6c18c957586","keyword":"结构优化","originalKeyword":"结构优化"},{"id":"cac15ab6-33fd-4b46-b50d-624174b63bbb","keyword":"蜂窝材料","originalKeyword":"蜂窝材料"},{"id":"5a994dad-cd06-4b50-8059-e11e5a915be2","keyword":"正交各向异性","originalKeyword":"正交各向异性"},{"id":"ce3e149d-d03c-49b5-bb1d-65c6b5b3a47c","keyword":"散热性能","originalKeyword":"散热性能"}],"language":"zh","publisherId":"fhclxb200803034","title":"正交各向异性蜂窝材料多功能优化设计","volume":"25","year":"2008"}],"totalpage":2164,"totalrecord":21639}