{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了定量表征镀层表面的形貌特征,应用当代非线性科学新理论--分形几何学方法,研究了几种镀层的表面形貌,用表面分形维数定量表征了其表面形貌特征.结果表明,用像素点覆盖法计算的表面分形维数介于1~2之间,覆盖法计算的则介于2~3之间,后者较接近表面形貌的真实分形维数;两者计算的相关系教都大于0.99,说明镀层具有分形结构.该方法可为进一步研究镀层表面形貌及优化电镀工艺参数提供一种新的定量依据.","authors":[{"authorName":"徐金来","id":"5f2875f9-df1f-4f2e-9de1-3ee8ae407dac","originalAuthorName":"徐金来"},{"authorName":"吴成宝","id":"d1747870-bde2-498f-9b64-1c3864193c97","originalAuthorName":"吴成宝"},{"authorName":"刘钧泉","id":"e295703b-fc61-4de3-a967-9811dce6c1e2","originalAuthorName":"刘钧泉"}],"doi":"","fpage":"31","id":"f6a21688-6649-4faf-9766-af4f7eb86ad5","issue":"5","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"67f92494-6c64-4313-8c72-7cb47d36b5cf","keyword":"镀层","originalKeyword":"镀层"},{"id":"7b157b1f-30da-4e4c-bfe4-3b1bd234f671","keyword":"表面形貌","originalKeyword":"表面形貌"},{"id":"2e811137-5226-4800-ad42-4b27e17c6dae","keyword":"分形几何学","originalKeyword":"分形几何学"},{"id":"a3c69db5-f3c4-4eb8-9fe4-3cb6639d953f","keyword":"维数","originalKeyword":"维数"},{"id":"35d493cf-0db8-431a-9a22-079d98d07ad5","keyword":"定量表征","originalKeyword":"定量表征"}],"language":"zh","publisherId":"ddyts200905009","title":"镀层表面形貌的分形维数定量表征","volume":"28","year":"2009"},{"abstractinfo":"高性能宽频带雷达罩的三维变厚度蜂窝通常由三维模具及五轴机床进行加工,这种方法周期长,费用大,且不灵活.本文采用的方法是,先将雷达罩三维空间曲面离散成窄带面,再把窄带面离散成一系列的三角形面,然后利用蜂窝材料在面内易于变形的特性,用数学展开方法结合平面等面积变形方法,把三维空间带状曲面族展开成平面形状,使每个空间曲面上的点都有对应的平面上的点,原来三维加工时需要的(X/Y/Z/T)四个自由度,经过本文的变换,成了(X*/Y*/T).这样降低了对加工设备及加工工装的要求,也增加了维修条件下变厚度蜂窝芯加工的灵活性,节约了加工的时间和费用.","authors":[{"authorName":"李兴德","id":"fd9b7ab0-071a-40c1-b611-ea78b03662b8","originalAuthorName":"李兴德"},{"authorName":"周春苹","id":"cf9d9b42-83d0-40c5-bd7c-67d71a971bb4","originalAuthorName":"周春苹"},{"authorName":"王敏","id":"95b429b3-f09b-4152-8b45-e925ca33a694","originalAuthorName":"王敏"},{"authorName":"裘进浩","id":"1d810cfe-53de-4496-9d39-e315544b856d","originalAuthorName":"裘进浩"}],"doi":"","fpage":"58","id":"9f5770f2-7260-42ab-a46c-ae2965f0b500","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"bfcec276-6845-44fb-83da-51149176e013","keyword":"变厚度","originalKeyword":"变厚度"},{"id":"4ef02537-dfdf-481e-ba9e-10a06c0f3848","keyword":"蜂窝材料","originalKeyword":"蜂窝材料"},{"id":"3c9f8832-86d5-41f1-a0fa-48926dfd1031","keyword":"夹层结构雷达罩","originalKeyword":"夹层结构雷达罩"},{"id":"7e87ee00-fbac-4427-8675-9d1b5fcc0714","keyword":"展开蜂窝加工","originalKeyword":"展开蜂窝加工"}],"language":"zh","publisherId":"blgfhcl201404013","title":"雷达罩变厚度蜂窝展开加工的几何学方法","volume":"","year":"2014"},{"abstractinfo":"研究了铌酸锂晶体沿c轴的真实生长界面及腐蚀坑模式,在两种情况中均观察到了明显的塞尔宾斯基(Sierpinski)三角垫分形几何特征,两种情况的分形维度通过计算得出均为ln3/ln2≈1.58.","authors":[{"authorName":"黄晖","id":"3987131f-0454-4587-bf77-e77347bf974e","originalAuthorName":"黄晖"},{"authorName":"许京军","id":"7b3110ef-8e0c-420b-b0cd-7dbfcd2418e4","originalAuthorName":"许京军"},{"authorName":"孔勇发","id":"2635dac2-e280-445f-a930-97cae996fb25","originalAuthorName":"孔勇发"},{"authorName":"张国权","id":"3f327263-b14c-4a12-aa39-a4c3f4a4ddb5","originalAuthorName":"张国权"},{"authorName":"舒永春","id":"7f4e81dd-805d-440e-abb8-1584f5b9986b","originalAuthorName":"舒永春"},{"authorName":"孙军","id":"39cac5c0-7a63-48d2-a832-b9227e67ce40","originalAuthorName":"孙军"},{"authorName":"徐晓轩","id":"7c2fe3d8-9c7f-4717-87fa-4f1f38b0a05d","originalAuthorName":"徐晓轩"},{"authorName":"张光寅","id":"a33cb0c6-6162-4323-b2c1-0b21ecf78f3d","originalAuthorName":"张光寅"}],"doi":"10.3969/j.issn.1000-985X.2004.04.038","fpage":"647","id":"6a4ee147-ae40-408b-88a3-2db733b092e3","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"234271a6-3f5f-44a5-83d6-cef9db703157","keyword":"铌酸锂晶体","originalKeyword":"铌酸锂晶体"},{"id":"957e9eb5-9ada-4ffe-8af1-54273b04113c","keyword":"塞尔宾斯基(Sierpinski) 三角垫","originalKeyword":"塞尔宾斯基(Sierpinski) 三角垫"},{"id":"78096cbe-af86-4cf6-a734-8d50b6dc6605","keyword":"分形几何","originalKeyword":"分形几何"}],"language":"zh","publisherId":"rgjtxb98200404038","title":"铌酸锂晶体中的分形几何观察","volume":"33","year":"2004"},{"abstractinfo":"本文利用扫描电镜对含Mn$夹杂物和含ZrN夹杂物的D6AC钢的冲击断口形貌进行了观察与分析;利用数字图象法测定了试样的断口分形维数,揭示了冲击断口形貌和冲击韧性与夹杂物含量之间的内在联系,探讨了材料冲击断口形貌与分形维数的关系,拓宽了分形几何学在材料领域的应用范围.\n","authors":[{"authorName":"叶瑞英","id":"cb942764-0c0d-4dde-8ffb-07d0c4403231","originalAuthorName":"叶瑞英"},{"authorName":"李静媛","id":"51f77c0b-b666-4168-9566-da2b22d1678d","originalAuthorName":"李静媛"},{"authorName":"马红","id":"cb022494-a33f-4579-b55d-1958865a3e67","originalAuthorName":"马红"},{"authorName":"李亚琴","id":"d47d3511-8fc8-4a12-9335-6a30f852dfcf","originalAuthorName":"李亚琴"},{"authorName":"李祝","id":"28c544d4-dd4b-4d09-b324-8651afe3e3e9","originalAuthorName":"李祝"}],"doi":"10.3969/j.issn.1673-2812.2001.04.011","fpage":"47","id":"c21808c7-518a-4b20-8688-af3250f48c3d","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"71d04720-a1b6-427f-9df5-dc333daf69fd","keyword":"D6AC钢","originalKeyword":"D6AC钢"},{"id":"1919a82a-079b-4fb8-b782-e87ce9da4dc0","keyword":"冲击韧性","originalKeyword":"冲击韧性"},{"id":"f604d6e5-869f-4559-bc7f-2fc034f16d8f","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"a7e705f7-edca-4533-8041-843be7a3c4bb","keyword":"分形维数","originalKeyword":"分形维数"}],"language":"zh","publisherId":"clkxygc200104011","title":"D6AC钢冲击断口形貌的分形研究","volume":"19","year":"2001"},{"abstractinfo":"针对一些含有相同的微裂缝随机分布概率密度但无序度不同的材料,建立了模拟材料断裂力学行为的二维不连续位移法边界元数值计算模型,实现了材料微裂缝的生长、扩展到最终破坏的全过程数值模拟.从分形几何的新视角深入地揭示了脆性或准脆性无序材料产生尺寸效应的微观机理.材料断裂力学行为的数值模拟结果与Bazant尺寸效应定律相符,不仅与微缺陷的密度有关,更与微缺陷大小随机分布的无序度相关,无序度越大的材料其尺寸效应越明显.得到了用初始分形维数D0表示的关于材料断裂强度的分形维数Dσ经验公式,可以更深入地解释材料的微观尺寸效应机理和断裂过程.","authors":[{"authorName":"张彤","id":"032dd14a-4fe7-4a4e-af7d-5a17bb60caeb","originalAuthorName":"张彤"},{"authorName":"孟庆元","id":"95b060f2-c6ed-4363-a463-f8794a7aa31d","originalAuthorName":"孟庆元"},{"authorName":"王富耻","id":"ee4626d1-38bc-4a23-ba86-4aa3ea67b03c","originalAuthorName":"王富耻"}],"doi":"10.3321/j.issn:1005-3093.2004.05.016","fpage":"549","id":"8a58a2a2-a7d5-4c7f-b264-132d5d814fc8","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"b0241d35-99ae-4d63-ae36-02986aa3a714","keyword":"材料科学基础学科","originalKeyword":"材料科学基础学科"},{"id":"5bef87cd-a059-4bde-bef5-6f32fadc44a1","keyword":"无序度","originalKeyword":"无序度"},{"id":"5c00580d-17ab-4cbe-9407-3dc3f4d99159","keyword":"分形几何","originalKeyword":"分形几何"},{"id":"023357e2-3c2a-4d97-a7b4-a7e892e8c845","keyword":"微裂缝长度分布","originalKeyword":"微裂缝长度分布"},{"id":"727a63f7-da0b-40c0-b910-8f11c5a4f0ac","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"0833633d-4976-4a99-8ace-7bbe89485375","keyword":"断裂强度","originalKeyword":"断裂强度"}],"language":"zh","publisherId":"clyjxb200405016","title":"无序材料微裂缝分形几何与尺寸效应的微观机理","volume":"18","year":"2004"},{"abstractinfo":"研究分形维数与断口形貌的关系,选用两套试样.一套试样经200C到700C回火处理.另一套含有不同体积分数的非金属夹杂物。这两套试样的断口形貌分别为沿晶断裂,韧性断裂和混合型断裂。因此将分形几何学应用于断口形貌的研究.可反映材料韧性与分形维数的关系。","authors":[{"authorName":"李静媛","id":"8127b743-a505-42f1-95a1-e2cd67e2652a","originalAuthorName":"李静媛"},{"authorName":"曾光廷","id":"4ae0ea17-b861-4276-9986-17cb5fcf50ee","originalAuthorName":"曾光廷"},{"authorName":"魏成富","id":"e073ba03-12b8-4932-af40-c046b1b4626c","originalAuthorName":"魏成富"}],"doi":"10.3969/j.issn.1004-244X.2001.02.006","fpage":"23","id":"575721ed-2362-45c7-8110-876a99d7fc26","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"531a2d27-5711-422b-a78d-7df941e80217","keyword":"分形","originalKeyword":"分形"},{"id":"76c26562-1d00-4490-a563-4a7ffbbb0fc8","keyword":"断口","originalKeyword":"断口"},{"id":"a6cb2a9a-2bd9-4d3e-82e4-a0a429cc78b3","keyword":"韧性:形貌","originalKeyword":"韧性:形貌"}],"language":"zh","publisherId":"bqclkxygc200102006","title":"分形维数与冲击断口形貌研究","volume":"24","year":"2001"},{"abstractinfo":"介绍了分形的概念以及分形维数的计算方法,重点讨论了分形理论在摩擦学研究,如摩擦表面分析、摩擦磨损问题研究和滑动摩擦温度分布的分形模型等方面的应用.","authors":[{"authorName":"陈海燕","id":"4873fdff-a09d-4609-95d5-1fa57e121276","originalAuthorName":"陈海燕"},{"authorName":"王成国","id":"3306814c-55eb-4e65-b67a-da121a4cdf5d","originalAuthorName":"王成国"}],"doi":"","fpage":"6","id":"fb689852-4e63-45b3-aab7-4e75f7ca8b2e","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"93861d60-e6fb-4a6d-b6ff-2213eb8f70ed","keyword":"分形","originalKeyword":"分形"},{"id":"07df6085-0e9c-494a-993b-25ef722f7053","keyword":"分形维数","originalKeyword":"分形维数"},{"id":"61d5f888-d832-40df-bb74-61b3ff3f740e","keyword":"摩擦学","originalKeyword":"摩擦学"}],"language":"zh","publisherId":"cldb200212003","title":"分形理论及其在摩擦学研究中的应用","volume":"16","year":"2002"},{"abstractinfo":"<正> 自80年代以来,分形(iractal)这一概念日益受到科学工作者的关注,并在许多自然现象的研究中得到了广泛的应用。不仅由此建立了新兴的分形几何学,也推动了对诸如湍流等复杂的物理系统的动力学研究。此外,在数学、物理、生物、材料、天文、地理甚至经济领域内也得到了应用。通常认为具有分形结构的物体或动力学过程具有在统计意义上的自相似结构和非整数的Hausdorff标度指数这两个特征。对材料工作者而言,这类物体的诱惑力在于理论上它们具有无穷大的表面积和无穷小的体积(如Sier-","authors":[{"authorName":"黄立基","id":"08f51dee-c0ad-4573-b5bf-416c561656eb","originalAuthorName":"黄立基"}],"categoryName":"|","doi":"","fpage":"9","id":"7dfd1c26-9716-42cb-a2b8-6e19dd591113","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[],"language":"zh","publisherId":"1005-3093_1988_1_23","title":"某些无序薄膜中的分形结构","volume":"2","year":"1988"},{"abstractinfo":"以分维几何学为基础,建立了断口二次电子像的分维Brownian模型,提出了以图像处理系统为手段的断口形貌的分维测量方法。研究了Ni粘结的Ti(C,N)金属陶瓷在三点弯曲条件下,断裂表面的分形维数与横向断裂强度及显微组织之间的关系,建立了金属陶瓷的微观断裂的Fractal模型,给出断口分形维数的计算表达式。实验结果表明,横向断裂强度的对数值lgσ_(bb)随分形维数D_F增加呈单调上升的直线关系;显微组织的变化对分形维数有重要影响;断口的分形维数依赖于测量码尺的选择,且存在上临界点ε_k′。","authors":[{"authorName":"刘宁","id":"e4fa1270-a139-4109-b6e2-f5953ea65aac","originalAuthorName":"刘宁"},{"authorName":"赵兴中","id":"f18f061e-6dfb-43ab-b5f1-4dda63b6a066","originalAuthorName":"赵兴中"},{"authorName":"江来珠","id":"a5fb39dc-91da-4667-97ee-1eb92af540fa","originalAuthorName":"江来珠"},{"authorName":"罗会国","id":"711997d1-a970-4c67-9f60-3243acc0cfff","originalAuthorName":"罗会国"},{"authorName":"胡镇华","id":"99a56fef-0573-4f1e-a555-eca6381ddb8b","originalAuthorName":"胡镇华"},{"authorName":"崔崑","id":"a851fac4-01bc-4825-b322-f5e419e71bf6","originalAuthorName":"崔崑"}],"categoryName":"|","doi":"","fpage":"229","id":"0962aff9-b825-41e8-b0d4-ffd623a0839a","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d4c0dda3-525b-4068-8f9d-dc5f3725fd90","keyword":"分形维数","originalKeyword":"分形维数"},{"id":"c0875ed3-3336-409b-9c5d-1b86d8a67bb7","keyword":" fracture morphology","originalKeyword":" fracture morphology"},{"id":"6375b427-98d8-4771-988b-1f5bcff8cc33","keyword":" fractal model","originalKeyword":" fractal model"},{"id":"563f3f5a-28bc-4ab4-b5e1-51b5f927c391","keyword":" Ti(C","originalKeyword":" Ti(C"},{"id":"42e78cbb-1adf-489f-bc2f-f9341a9564d3","keyword":" N) cermet","originalKeyword":" N) cermet"}],"language":"zh","publisherId":"0412-1961_1995_5_6","title":"Ni粘结的Ti(C,N)金属陶瓷的横向断裂强度与断口的分形分析","volume":"31","year":"1995"},{"abstractinfo":"利用分形几何学理论定量表征了几种水泥断口表面的微观形貌特征,并且考察了断口表面分形维数与其抗压强度的关系.结果表明,水泥断口的表面分形维数介于2~3之间,且线性回归分析的相关系数均大于0.98,强的相关性表明实验所选用的水泥断口具有明显的分形特征;水泥的抗压强度与其断口表面分形维数值呈正相关关系.","authors":[{"authorName":"林道云","id":"8760dfe7-0379-4033-8c4a-1848fb7630bd","originalAuthorName":"林道云"},{"authorName":"胡小芳","id":"0ffbb53f-1d55-481e-a357-b49b3cba5f8a","originalAuthorName":"胡小芳"}],"doi":"","fpage":"280","id":"497dfbaf-5796-458e-b9b5-1c1ea2b67b72","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4aa26957-6fe2-4c67-95b5-50f611b77922","keyword":"水泥","originalKeyword":"水泥"},{"id":"892c835e-bd22-4e0a-929c-78b215d954c3","keyword":"微观形貌","originalKeyword":"微观形貌"},{"id":"cee8c92f-5017-4744-9f46-a29c425d0ecb","keyword":"表面分形维数","originalKeyword":"表面分形维数"},{"id":"925559b2-3f1e-4c5f-8113-7e6ad61a6a0b","keyword":"盒维数法","originalKeyword":"盒维数法"},{"id":"888a0228-d77d-436a-81f8-fa30288e932e","keyword":"定量表征","originalKeyword":"定量表征"}],"language":"zh","publisherId":"cldb2009z2085","title":"水泥断口表面形貌的分形维数定量表征研究","volume":"23","year":"2009"}],"totalpage":1601,"totalrecord":16004}