{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以Cu2+为例,将柠檬酸用于重金属离子生物矿化过程中的晶体生长调控,通过粗化矿化产物的颗粒粒径,提高了重金属矿化产物在土壤和水体中的稳定性.研究发现,铜离子生物矿化产物颗粒平均粒径为12 μm,柠檬酸的掺量为底物质量的0.5%时,矿化产物的平均粒径增加到40 μm.研究了不同pH值培养基下的矿化产物粒径.发现当体系pH值提高后,柠檬酸的电离程度提高,对铜离子的络合作用加强,有利于矿化产物的粒径增加.初始pH值调整至8,反应体系pH值为5.21时,铜离子矿化产物平均粒径达到65 μm.","authors":[{"authorName":"","id":"ded4ba6e-8b92-4eb0-b861-ae667ec356c3","originalAuthorName":"许燕波"},{"authorName":"钱春香","id":"602f7572-9e91-46ae-8102-b2e59acd3173","originalAuthorName":"钱春香"},{"authorName":"陆兆文","id":"7ddb66b7-a5b6-4700-9d2b-b3c7a81870df","originalAuthorName":"陆兆文"}],"doi":"","fpage":"92","id":"455f436c-7d80-4de2-898b-cc8f6f4b7afb","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4aebe254-33b4-49cf-8207-13fa5494dbd3","keyword":"生物矿化","originalKeyword":"生物矿化"},{"id":"5ff794c6-5dc3-4fe1-a156-417a376708b0","keyword":"重金属","originalKeyword":"重金属"},{"id":"2c52f44f-4a71-4818-b86d-f0313747d949","keyword":"Cu2+","originalKeyword":"Cu2+"},{"id":"50954b30-3777-4c92-9635-608219f034a3","keyword":"柠檬酸","originalKeyword":"柠檬酸"},{"id":"555827b0-31a9-4820-9e33-64219375edc0","keyword":"粒径","originalKeyword":"粒径"}],"language":"zh","publisherId":"cldb201302025","title":"柠檬酸粗化铜离子矿化产物颗粒粒径的研究","volume":"27","year":"2013"},{"abstractinfo":"按照CCAR25.613条款“材料与结构用值”的要求,民用飞机雷达罩需进行用值设计.本文通过研究确定了进行雷达罩玻璃纤维复合材料设计用值试验的试验项目、试验采用的标准、试验环境、试验件数量以及试验数据的处理方法等,并将采用ASTM标准测试得到的用值试验数据与用GB标准得到的测试数据进行了比较.结果表明,按照ASTM标准进行玻璃纤维复合材料结构设计用值试验得到的数据分散性小,用值的测试数据高,避免了采用国内标准导致的性能数据低的情况.该设计用值已成功应用于新型涡扇支线飞机雷达罩的设计和静力试验.","authors":[{"authorName":"周春苹","id":"9232d9c5-5ad4-42f8-bd38-0ce57c8a9d2b","originalAuthorName":"周春苹"},{"authorName":"李兴德","id":"f21cb0df-2e65-417e-88c3-2357c2ead0df","originalAuthorName":"李兴德"},{"authorName":"朱杉","id":"3f0c8015-c643-46da-8831-a36d947a9fcf","originalAuthorName":"朱杉"}],"doi":"","fpage":"51","id":"cdca377e-9a87-41c8-9f55-ab167437961e","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"9858174f-58df-4192-bafb-f1dc6c13b044","keyword":"雷达罩","originalKeyword":"雷达罩"},{"id":"e7cf85a4-a69f-4f63-ae35-f7c100629e7b","keyword":"玻璃纤维复合材料","originalKeyword":"玻璃纤维复合材料"},{"id":"742a303f-ecc9-46fc-91a8-f3da2346f833","keyword":"结构用值","originalKeyword":"结构许用值"}],"language":"zh","publisherId":"blgfhcl201305011","title":"确定雷达罩设计用值的方法研究","volume":"","year":"2013"},{"abstractinfo":"分析国内外复合材料飞机结构材料用值、设计用值的确定原则和方法,研究给出了复合材料结构材料用值的表征和应用、试验以反试验数据的统计分析方法,以及静强度、疲劳强度、损伤容限和修理设计用值的确定方法.","authors":[{"authorName":"冯振宇","id":"bd3a1ead-4a3e-4f28-bd43-8b23eecd4c0f","originalAuthorName":"冯振宇"},{"authorName":"邹田春","id":"1287f44e-acba-4d3e-aa64-0ca3b6f9a647","originalAuthorName":"邹田春"},{"authorName":"郝鹏","id":"2089ccb7-1fcd-4bb3-8497-7f1d21137efc","originalAuthorName":"郝鹏"},{"authorName":"杜洪增","id":"dc45df42-9f87-427e-b2ba-bbdd1933b2ca","originalAuthorName":"杜洪增"},{"authorName":"田秀云","id":"60750894-d72f-45d8-9abe-51d38e5aea4f","originalAuthorName":"田秀云"}],"doi":"10.3969/j.issn.1007-2330.2011.05.004","fpage":"15","id":"129b24d3-1afc-443b-93f5-a850f0d2e6d3","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"d0030691-d336-436f-9ca9-df85ae53642b","keyword":"飞机结构","originalKeyword":"飞机结构"},{"id":"653dc435-cda2-43e1-b1ff-16cdd4290481","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"16f9abda-03da-4cc2-96e9-07844c40c549","keyword":"材料用值","originalKeyword":"材料许用值"},{"id":"68baf9d6-f1c4-44ed-bbb4-5736f6f67fc7","keyword":"设计用值","originalKeyword":"设计许用值"}],"language":"zh","publisherId":"yhclgy201105004","title":"复合材料飞机结构材料和设计用值的确定方法","volume":"41","year":"2011"},{"abstractinfo":"采用最小二乘法和K-S检验方法进行分布拟合检验,在求得35CrMoV钢硬度和抗拉强度正态分布的基础上,对其硬度和抗拉强度关系进行相关性研究,运用线性相关系数判断硬度和抗拉强度之间具有强正线性相关关系.运用正态代数运算方法,从硬度的概率分布估计抗拉强度的概率分布,预测其设计用值,并与从抗拉强度概率分布计算得到的设计用值进行分析比较,预测的结果均值误差较小,方差误差较大,故求得的设计用值有一定的误差.","authors":[{"authorName":"马延辉","id":"ec86aa17-f42e-4bbc-8bd2-db72d3219789","originalAuthorName":"马延辉"},{"authorName":"张天会","id":"a7478996-cf75-440f-90e8-0effd6715481","originalAuthorName":"张天会"},{"authorName":"李华英","id":"f88466a1-3a8f-4600-b3d4-f3645943f38e","originalAuthorName":"李华英"},{"authorName":"徐人平","id":"3dd90d8b-9d20-41d0-a9f9-6eb5597009ab","originalAuthorName":"徐人平"}],"doi":"10.3969/j.issn.1003-1545.2011.03.003","fpage":"8","id":"6853516f-25a6-4174-8d45-a01f94e6c4be","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"c1b32edf-9d0d-4c8a-bc58-50f5767f98b6","keyword":"布氏硬度","originalKeyword":"布氏硬度"},{"id":"45ef6824-8116-43b0-9e77-39f82c40d203","keyword":"抗拉强度","originalKeyword":"抗拉强度"},{"id":"0d942533-a0b8-4dc0-8d28-12ed42b07077","keyword":"35CrMoV钢","originalKeyword":"35CrMoV钢"},{"id":"57e73c4e-c8da-431e-ba18-7b18fef1242d","keyword":"设计用值","originalKeyword":"设计许用值"},{"id":"249b4596-d320-4766-9811-c84959da8a90","keyword":"概率分布","originalKeyword":"概率分布"}],"language":"zh","publisherId":"clkfyyy201103003","title":"35CrMoV钢硬度概率分布与抗拉强度设计用值预测分析","volume":"26","year":"2011"},{"abstractinfo":"为评估航空结构中常用的T300级和T800级2种碳纤维/环氧树脂复合材料层压板的冲击后压缩用值,对2种材料体系下具有不同厚度及铺层的层板进行了低速冲击和冲击后压缩试验;讨论了冲击能量、凹坑深度、损伤面积及冲击后剩余压缩强度等之间的关系,以及厚度、铺层、表面防护等因素对其造成的影响;重点关注了2种材料体系下各组层板的目视勉强可见冲击损伤(BVID)形成条件以及含BVID层板的剩余强度.结果表明:厚度及铺层对层板的凹坑深度-冲击能量关系影响较大,而对冲击后压缩强度-凹坑深度及冲击后压缩破坏应变-凹坑深度关系影响较小,且在相同铺层比例下,BVID对应的冲击能量随厚度近似呈线性增长.X850层板的损伤阻抗性能明显优于CCF300/5228层板的,但二者损伤容限性能相当.加铜网、涂漆等表面处理显著提高了层板的损伤阻抗,但对损伤容限性能影响不大;在损伤不超过BVID时,所有CCF300/5228试件的压缩破坏应变均大于4 000με,而X850材料体系下压缩破坏应变均在3 000με之上.","authors":[{"authorName":"杨旭","id":"5a641eac-d89f-4caa-a2ff-060984ff5ed5","originalAuthorName":"杨旭"},{"authorName":"何为","id":"0ff20152-6e37-4d03-972b-9cf346588e40","originalAuthorName":"何为"},{"authorName":"韩涛","id":"b732b262-ca93-4c04-9cbf-b2301afae4bd","originalAuthorName":"韩涛"},{"authorName":"王进","id":"690f185c-4f20-4cd0-afb7-e4bf50b31f33","originalAuthorName":"王进"}],"doi":"","fpage":"1626","id":"22695e99-c7f1-4f75-97ce-50b2336d8b77","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"b75bc5d6-025c-41ad-afca-15ccdbb1d0a8","keyword":"压缩用值","originalKeyword":"压缩许用值"},{"id":"0ceb6512-f895-4d3e-a06f-ea25279a8224","keyword":"低速冲击","originalKeyword":"低速冲击"},{"id":"50b2ec33-20a7-44d7-bc61-ab0821823a4c","keyword":"冲击后压缩","originalKeyword":"冲击后压缩"},{"id":"78d1cb62-461e-46d4-986b-a9e71b245d35","keyword":"目视勉强可见冲击损伤","originalKeyword":"目视勉强可见冲击损伤"},{"id":"68f05d85-79d7-474b-9608-dddae9ec92f6","keyword":"凹坑深度","originalKeyword":"凹坑深度"},{"id":"5c1d0f09-c1e6-412a-afc5-6e45d8db9ecb","keyword":"表面防护","originalKeyword":"表面防护"}],"language":"zh","publisherId":"fhclxb201406033","title":"低速冲击下复合材料层板压缩用值","volume":"31","year":"2014"},{"abstractinfo":"拉伸强度材料用值是开展舰用复合材料结构设计所需的重要指标参量.SW220/430LV复合材料是目前较为常用的舰用复合材料体系之一.首先依据规范GB/T 1447-2005开展0°/90°铺层试件拉伸强度试验研究,并根据B基准值要求,得出拉伸强度基准值XT.在此基础上,分别针对不同折减系数条件下的载荷值,开展拉-拉疲劳特性、疲劳承载后剩余强度/刚度试验研究,并同时探讨了载荷特征、应力比、加载频率、疲劳周期等对SW220/430LV复合材料疲劳特性的影响规律.研究结果表明,当计及结构疲劳承载时,SW220/430LV复合材料拉伸强度材料用值可取为0.45XT.","authors":[{"authorName":"陈国涛","id":"cc03cd64-accd-4f55-954e-b877442d8c9d","originalAuthorName":"陈国涛"},{"authorName":"梅志远","id":"a4cb4b17-dd3e-4471-9435-f572282ac1a5","originalAuthorName":"梅志远"},{"authorName":"李华东","id":"b63f501c-de87-41d2-ba44-d1b1a5b0f8e9","originalAuthorName":"李华东"}],"doi":"","fpage":"11","id":"43308758-25ea-4bc5-8d26-03f4de31c778","issue":"9","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"5428740d-c9e9-40c1-a380-de98953e7e6a","keyword":"拉伸强度材料用值","originalKeyword":"拉伸强度材料许用值"},{"id":"5cd6a9ad-2bff-4674-a070-82cffbbfc8e9","keyword":"SW220/430LV复合材料","originalKeyword":"SW220/430LV复合材料"},{"id":"b1f9b5ac-2be1-4ea3-a06c-3fcdbd2f15cb","keyword":"拉-拉疲劳","originalKeyword":"拉-拉疲劳"},{"id":"ff145e1a-38d0-42d6-87a4-8254b0fb26c2","keyword":"折减系数","originalKeyword":"折减系数"},{"id":"0d7d1c3f-520b-4846-a837-774941d16981","keyword":"剩余刚度","originalKeyword":"剩余刚度"}],"language":"zh","publisherId":"blgfhcl201509002","title":"SW220/430LV复合材料拉-拉疲劳强度材料用值试验研究","volume":"","year":"2015"},{"abstractinfo":"为了解煤矿区地下水稀土元素地球化学特征,采集了疃煤矿3个含水层水样,进行常规离子和稀土元素测试,探讨了稀土组成及元素异常特征,结果表明:疃矿3个含水层呈碱性,pH值平均为8.7,地下水中阴离子以HCO3为主,阳离子以K++Na+为主.Ca2+和Mg2含量在灰岩水中最大,Na++K+浓度在煤系水中最高.地下水中稀土总量偏低(∑REE =0.023 ~0.251 μg.L 1),经后太古宙平均页岩标准化,表现为轻稀土亏损,重稀土富集,所有样品均表现为明显的Eu正异常,多数样品表现为Ce和Y负异常;这些特征受到多种因素控制,其中Ce负异常受到地下水pH值影响,而Eu异常受长石类矿物溶解的影响,Y负异常和较低的Y/Ho值与Ca2+浓度密切相关,受到围岩作用的影响.这些特征及影响因素表明利用稀土元素特征进行矿井水源识别具有一定的可行性.","authors":[{"authorName":"陈松","id":"b1ddfc27-b424-421e-8364-daef838250fd","originalAuthorName":"陈松"},{"authorName":"桂和荣","id":"7cb0f1c8-63f9-4dd0-bea6-aeb5af8f68c1","originalAuthorName":"桂和荣"}],"doi":"10.11785/S1000-4343.20170217","fpage":"294","id":"55730d14-a826-4c1d-b2cc-0864c7b7c3ec","issue":"2","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"9c847acb-8a6b-46a5-8320-4af287c33a1f","keyword":"稀土元素","originalKeyword":"稀土元素"},{"id":"d5e41191-d347-4bcf-b29f-c5195f158c35","keyword":"地球化学","originalKeyword":"地球化学"},{"id":"dfdbeb16-4d6b-43a0-bc5b-aff760e87c3a","keyword":"地下水","originalKeyword":"地下水"},{"id":"26731d45-65f2-4575-8a41-32b6ca502663","keyword":"疃煤矿","originalKeyword":"许疃煤矿"}],"language":"zh","publisherId":"zgxtxb201702017","title":"煤矿区地下水稀土元素地球化学特征:以皖北疃矿为例","volume":"35","year":"2017"},{"abstractinfo":"重点对吸涂料的吸机理以及粘结剂和吸收剂种类进行了论述,并对吸涂料的发展趋势进行了简单描述.","authors":[{"authorName":"王连杰","id":"087d12de-8bd2-421f-ab69-4b1db8efd33b","originalAuthorName":"王连杰"},{"authorName":"高焕方","id":"4651ec1b-201a-492b-9fea-3b9414a87c74","originalAuthorName":"高焕方"}],"doi":"10.3969/j.issn.1001-3660.2004.06.005","fpage":"13","id":"49a38e58-ea30-4b45-8a10-8eb43fac8cbd","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d759e4ce-0a68-4273-9b5b-f30eb59b0a8a","keyword":"吸收剂","originalKeyword":"吸收剂"},{"id":"33cb5689-13e3-480f-b36c-8559d6104cca","keyword":"吸涂料","originalKeyword":"吸波涂料"},{"id":"e1757bc1-1563-4f02-9867-880c7bca2021","keyword":"隐身涂料","originalKeyword":"隐身涂料"}],"language":"zh","publisherId":"bmjs200406005","title":"吸涂料概述","volume":"33","year":"2004"},{"abstractinfo":"以电磁理论为基础,对两层结构的毫米/厘米兼容吸收涂层的设计方法进行了分析,并根据理论分析的结果进行了系列吸涂层的实验.理论分析和实验结果表明,先分别以电损耗和磁损耗为主,采用单层结构分别对毫米和厘米实现较好的吸收,然后以厘米吸收层作为内层,以毫米吸收层作为外层,并进一步改善内外层之间的阻抗匹配,利用两层结构可以对毫米和厘米实现较好的兼容吸收.","authors":[{"authorName":"于名讯","id":"32f63a4b-0d00-4861-920a-646c2d3db7f1","originalAuthorName":"于名讯"},{"authorName":"丁文皓","id":"8efc93c8-2666-49e1-8110-c3d751d654de","originalAuthorName":"丁文皓"},{"authorName":"李云南","id":"0a8b4566-1a57-49e0-9c72-e96208a56e70","originalAuthorName":"李云南"},{"authorName":"何华辉","id":"069f80fe-d6a4-4e78-b633-d3521cc0da2a","originalAuthorName":"何华辉"}],"doi":"10.3969/j.issn.1001-4381.2007.07.003","fpage":"12","id":"241c7b15-b2c0-4582-8349-f4f5fb560101","issue":"7","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"e36b3a53-0ff8-41a5-a5cf-be1ed5201b47","keyword":"兼容吸涂层","originalKeyword":"兼容吸波涂层"},{"id":"e64e0712-25e5-48c3-a55f-7c817aae89e8","keyword":"毫米","originalKeyword":"毫米波"},{"id":"c53b4ee4-bfef-470a-a4d2-6bdecb26e78d","keyword":"厘米","originalKeyword":"厘米波"}],"language":"zh","publisherId":"clgc200707003","title":"毫米/厘米兼容吸涂层的设计与研究","volume":"","year":"2007"},{"abstractinfo":"综述了目前国内外吸材料的研究动态,介绍了传统吸材料以及新型吸材料,如铁氧体吸材料、碳纤维结构吸材料、纳米吸材料、手性吸材料,多晶铁纤维吸材料,导电高聚物吸材料,雷达红外兼容吸材料的研究状况.","authors":[{"authorName":"王海泉","id":"14ceb226-71e1-4e4a-997d-0074f61a35ae","originalAuthorName":"王海泉"},{"authorName":"陈秀琴","id":"c436b760-cb39-41f7-b062-d0d563f725a3","originalAuthorName":"陈秀琴"}],"doi":"","fpage":"170","id":"a7036c20-815e-422c-a704-d7fc448d280c","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"05ae1e4a-cbd8-4ae8-aa77-e2ba197b715d","keyword":"吸材料","originalKeyword":"吸波材料"},{"id":"2477cd37-a2c9-46c3-94ab-c74ec72d8b9d","keyword":"隐身技术","originalKeyword":"隐身技术"},{"id":"9da683df-73b9-4e7a-ba68-5dd027b6bdf1","keyword":"吸收剂","originalKeyword":"吸收剂"},{"id":"5db80759-9161-41c7-96da-e28b42b00914","keyword":"纳米材料","originalKeyword":"纳米材料"}],"language":"zh","publisherId":"cldb2003z1053","title":"吸材料的研究进展","volume":"17","year":"2003"}],"totalpage":306,"totalrecord":3059}