{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以NaCl晶体为致孔剂,合成了具有pH及温度双重敏感特性的海藻酸钠接枝甲基丙烯酸梳状多孔凝胶.利用扫描电镜观察到该凝胶具有特殊的孔洞结构,孔径大小为100 μm左右.不同pH值及温度下的溶胀和溶胀-收缩动力学研究表明,该凝胶具有较快的响应速率,在5 min内可以达到溶胀平衡,而且溶胀收缩行为有较好的重复性.该凝胶的最低临界溶液温度(LCST)为30℃左右.比较含孔不同的凝胶膜的响应曲线,发现含孔越多,溶胀率和凝胶体积变化量越大,溶胀收缩响应速率越快.","authors":[{"authorName":"刘云海","id":"1875dc05-eb18-4d7c-8ab9-a01e63804fd6","originalAuthorName":"刘云海"},{"authorName":"曹小红","id":"71a0d1c2-a01b-4acb-bbaa-761dc59f43f3","originalAuthorName":"曹小红"},{"authorName":"郑建珍","id":"72aee6c6-d4c4-4c11-bd0d-f319cb99dfe5","originalAuthorName":"郑建珍"},{"authorName":"罗明标","id":"8eba3b38-cf9b-4eda-8121-d068d00a3b81","originalAuthorName":"罗明标"}],"doi":"","fpage":"232","id":"9fb5d732-4a94-4bdd-948b-b6c51ac3ba88","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0279c616-98a3-4377-9ac1-ce36af2d36c1","keyword":"海藻酸钠","originalKeyword":"海藻酸钠"},{"id":"8b4a8daa-0c28-4189-a8e1-f65d710b436b","keyword":"甲基丙烯酸","originalKeyword":"甲基丙烯酸"},{"id":"953c9a84-5b00-4e68-ad60-cf017bc3511d","keyword":"多孔凝胶","originalKeyword":"多孔水凝胶"},{"id":"58168d5d-165f-4dfe-a61d-3bf0b6cc91f5","keyword":"快速响应","originalKeyword":"快速响应"}],"language":"zh","publisherId":"gfzclkxygc200605059","title":"快速环境响应多孔凝胶的制备及性能","volume":"22","year":"2006"},{"abstractinfo":"以丙烯酸、丙烯酰胺为单体,过硫酸钾为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,利用水溶液聚合法和乙醇致孔法制备了聚丙烯酰胺/丙烯酸钾互穿网络多孔凝胶.采用红外光谱(FTIR)和扫描电镜(SEM)等分析技术对凝胶进行了表征,研究了凝胶的溶胀行为和吸0.9%NaCl(质量分数,下同)盐水的能力.实验结果表明,该多孔凝胶具有较快的吸水速率,其最高吸水倍率可达3600g/g,吸0.9%NaCl盐水倍率最大可达120g/g,凝胶粉末能在8min内达到溶胀平衡.","authors":[{"authorName":"冷晴","id":"24fabe12-8249-46d3-b156-db6729a19148","originalAuthorName":"冷晴"},{"authorName":"林建明","id":"d010c1c7-3c2e-488d-b8b1-535a027b61ab","originalAuthorName":"林建明"},{"authorName":"吴季怀","id":"aa104f33-5212-4b18-afaa-e4a04b681e36","originalAuthorName":"吴季怀"},{"authorName":"许开卿","id":"1f26ba31-6b51-4739-97d9-a9766e8e6cfa","originalAuthorName":"许开卿"},{"authorName":"黄妙良","id":"eac315fe-c245-420e-8cdb-17bcb55eb40e","originalAuthorName":"黄妙良"}],"doi":"","fpage":"28","id":"4ebdedbe-dfe5-40d1-bf91-ebfd6f1082d1","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"17c88d6f-ff24-4350-a215-10b06e7ba9bd","keyword":"多孔凝胶","originalKeyword":"多孔水凝胶"},{"id":"087b05a2-8d2e-4652-84b0-8e641f0729c7","keyword":"溶胀行为","originalKeyword":"溶胀行为"},{"id":"bb1ae199-20b9-4110-a1b0-767874211e41","keyword":"互穿网络","originalKeyword":"互穿网络"},{"id":"17828fea-8e60-450a-a621-fdf7455e7708","keyword":"耐盐性","originalKeyword":"耐盐性"},{"id":"3c0af1d3-a27b-45cf-85ef-33f133a4dc61","keyword":"乙醇","originalKeyword":"乙醇"}],"language":"zh","publisherId":"cldb201120007","title":"聚丙烯酰胺/丙烯酸钾互穿网络多孔凝胶的制备和性能","volume":"25","year":"2011"},{"abstractinfo":"通过可逆加成.断裂链转移聚合法(RAFT)一步反应成功合成了温度和pH双重敏感的聚乙二醇甲基丙烯酸酯(0EGMA)-CO-丙烯酸梳形/多孔智能凝胶。采用扫描电镜(SEM)对凝胶结构进行表征,结果表日月,随着加入的致孔剂聚乙二醇(PEG)分子量越大、加入量越多。所得多孔凝胶的孔径就越大、孔的数目就越多。对凝胶进行溶胀测试,结果表明,在RAFT试剂的调控下所得凝胶的结构更均匀,因此所得凝胶的溶胀性能较好;经PEG致孔后的凝胶,其溶胀程度和响应速率相对于致孔前都有所提高;此外OEGMA侧链PEG的长度和交联剂中间链段的长度都对凝胶的溶胀性能有显著的影响。","authors":[{"authorName":"刘桂廷","id":"e201b17b-f98b-450b-ad1b-f3c35ad55371","originalAuthorName":"刘桂廷"},{"authorName":"杨云云","id":"27f32442-983e-425f-99b8-7c28be5bb9c7","originalAuthorName":"杨云云"},{"authorName":"叶磊","id":"407dc726-57da-4f9a-ad9c-1acf0025f7aa","originalAuthorName":"叶磊"},{"authorName":"闫付臻","id":"a3297165-808d-46a3-bde2-9fae0f8ea01f","originalAuthorName":"闫付臻"},{"authorName":"徐伟","id":"ea8a24ea-8b85-4f0c-8d21-8a2c0152eb4b","originalAuthorName":"徐伟"},{"authorName":"冉蓉","id":"53f09f5e-6b4c-4b91-9e2c-297a05318f9e","originalAuthorName":"冉蓉"}],"doi":"","fpage":"13","id":"8040d08d-dbee-4eb2-bc42-452069332737","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8b966be6-3d99-40a7-ae7a-2d0314e518f6","keyword":"可逆加成","originalKeyword":"可逆加成"},{"id":"50017559-0ac3-4b2f-a04c-c309c84c1e7f","keyword":"断裂链转移聚合法","originalKeyword":"断裂链转移聚合法"},{"id":"328f4bcc-3caa-42ce-95f0-7b184253075a","keyword":"梳形","originalKeyword":"梳形"},{"id":"9c811e26-49c8-4221-aa28-2a5e583eca74","keyword":"多孔凝胶","originalKeyword":"多孔水凝胶"},{"id":"ac362d9b-c9d3-4767-8697-55e99b9d2fe8","keyword":"温度和pH双敏感","originalKeyword":"温度和pH双敏感"},{"id":"53019611-dd42-4644-a212-225182a8aff2","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"}],"language":"zh","publisherId":"gfzclkxygc201212004","title":"RAFT一步法制备温度和pH双重响应的多孔智能凝胶及其性能","volume":"28","year":"2012"},{"abstractinfo":"研究具有较高 LCST 且响应速率快的温敏性凝胶.以NaCl水溶液为反应介质,采用相分离法合成了多孔凝胶 P (NIPA-co-SA).利用傅立叶变换红外光谱仪(FT-IR)表征产物结构,并借助扫描电子显微镜、差示扫描量热法(DSC)、浊度法等手段研究了反应介质浓度对产物微观形貌、相变温度和相变响应速率的影响规律.结果表明,P(NIPA-co-SA)凝胶具有对温度敏感的响应特性,其低临界溶解温度(LCST)可达到75℃.NaCl 水溶液浓度不影响产物的LCST,且随着反应中 NaCl 水溶液浓度的提高,凝胶表面逐渐出现不连续的浅而封闭的小孔到互相贯穿的开孔,凝胶相变响应速率在一定范围内逐渐提高,具有快速响应特性.","authors":[{"authorName":"杨漪","id":"305d5206-ac99-4256-847d-962ef6b0e072","originalAuthorName":"杨漪"},{"authorName":"邓军","id":"181cc33e-7ef7-4de7-ac70-54bbc2c08f56","originalAuthorName":"邓军"},{"authorName":"程方明","id":"c0ee0ac3-ef99-41a0-bcd8-45d24483381d","originalAuthorName":"程方明"},{"authorName":"赵大龙","id":"00abaca3-d47c-4411-b6ed-9ef14903a59a","originalAuthorName":"赵大龙"},{"authorName":"唐凯","id":"a0ee525a-cb3e-4abc-80a4-9ab8ab833160","originalAuthorName":"唐凯"}],"doi":"10.3969/j.issn.1001-9731.2014.增刊(Ⅱ).028","fpage":"129","id":"f6b0080c-c77a-4c32-83e9-f41eba8c0c42","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"4f3ebd3f-a814-40af-9454-92fc71996975","keyword":"N-异丙基丙烯酰胺","originalKeyword":"N-异丙基丙烯酰胺"},{"id":"9b4e7f3d-8b5e-48fd-9629-50e9dabaaf4a","keyword":"多孔凝胶","originalKeyword":"多孔水凝胶"},{"id":"d9fe7e52-3f4c-44bb-aeaa-3bb1f174b929","keyword":"快速响应","originalKeyword":"快速响应"},{"id":"a42e41bd-1b69-4b2c-a30c-6c0af1b967fa","keyword":"温度敏感性","originalKeyword":"温度敏感性"}],"language":"zh","publisherId":"gncl2014z2028","title":"快速响应型P(NIPA-co-SA)凝胶制备及温敏性能?","volume":"","year":"2014"},{"abstractinfo":"研究了不同多孔结构聚乙烯醇凝胶的微观形貌,采用数字散斑相关技术和力学实验测试等对多孔凝胶在受力状态下的微区位移、压缩模量及泊松比进行分析和计算.研究发现,多孔凝胶的孔隙率和孔径大小对形变等位移线分布有明显影响.随着致孔剂含量的增加,多孔凝胶的等位移线由均匀分布的近似平行线变为不均匀的S形曲线,出现等位移线密度明显增大的应力集中区域.多孔凝胶孔隙率增加,形变增大.致孔剂种类及含量不同时,凝胶的泊松比值随着载荷的增加逐渐减小,致孔剂含量越多泊松比值越小,压缩模量则随着应变的增加逐渐增大.","authors":[{"authorName":"孟昊业","id":"5e68fe69-4d9a-4523-ae8c-6cf7b2954463","originalAuthorName":"孟昊业"},{"authorName":"郑裕东","id":"eae0d429-8a8e-47bf-87d9-ca59b2c4a1fb","originalAuthorName":"郑裕东"},{"authorName":"奚廷斐","id":"7aabe33e-bffa-4964-947f-3bd07412d221","originalAuthorName":"奚廷斐"},{"authorName":"姚学锋","id":"d038455f-58b9-41fb-bd12-d6bbc9d78643","originalAuthorName":"姚学锋"},{"authorName":"吕鹤翔","id":"5932ea98-7db1-4e65-b802-4bf24c65eb14","originalAuthorName":"吕鹤翔"},{"authorName":"徐曼琼","id":"b14765df-6b81-4192-af66-6e17e891bd38","originalAuthorName":"徐曼琼"}],"doi":"","fpage":"50","id":"944b6e01-20d4-4c74-9665-a5dff290c163","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"308b8bf1-e0bc-46b1-8f6d-8f2567bc5504","keyword":"复合凝胶","originalKeyword":"复合水凝胶"},{"id":"d4081f79-80f6-49b1-9a7d-d12ecd55590a","keyword":"多孔结构","originalKeyword":"多孔结构"},{"id":"9671b959-7130-4918-bbf3-6fcb3946796e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"1d5cbceb-d118-4d59-80bd-d76f40a87bb6","keyword":"微观形变","originalKeyword":"微观形变"}],"language":"zh","publisherId":"fhclxb201101009","title":"复合多孔凝胶的微观结构与数字散斑相关分析","volume":"28","year":"2011"},{"abstractinfo":"为了提高聚N-异丙基丙烯酰胺-丙烯酸钠(PNIPAM-PSA)凝胶汲取剂的正渗透性能,加入致孔剂聚乙二醇(PEG),通过交联聚合法制备了多孔聚N-异丙基丙烯酰胺-丙烯酸钠(PNIPAM-PSA)凝胶汲取剂.采用红外光谱、扫描电镜等测试方法对其进行了表征,并研究了凝胶汲取剂的溶胀率、脱水率、通量和再生性能.结果表明,加入致孔剂PEG (400)后,凝胶的表面呈多孔结构;当PEG(400)与单体摩尔比为1∶2时,所制备的多孔凝胶性能最好,与PNIPAM-PSA凝胶相比,其溶胀率、脱水率和正渗透水通量分别提高了162.26%,15.08%和144.44%;再生的凝胶,正渗透性能稳定.","authors":[{"authorName":"孙晓君","id":"cab3e6bb-9f56-4aa2-9562-cae73cbb9b6e","originalAuthorName":"孙晓君"},{"authorName":"宫正","id":"8a54ee95-fb27-43bb-bb6e-6c4e8245e69c","originalAuthorName":"宫正"},{"authorName":"魏金枝","id":"d4042318-ee78-4b9a-8361-2b6b3cbe675c","originalAuthorName":"魏金枝"},{"authorName":"喻琪","id":"dcac0002-e950-4b3a-862b-dd0addab79c1","originalAuthorName":"喻琪"}],"doi":"","fpage":"11","id":"763c194a-cf9c-441c-9765-8c7d8b904a08","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d401fa2c-a667-48fb-a428-05d86b4159c9","keyword":"N-异丙基丙烯酰胺","originalKeyword":"N-异丙基丙烯酰胺"},{"id":"6b55a589-8943-40e9-8aa6-bf9e5981c794","keyword":"丙烯酸钠","originalKeyword":"丙烯酸钠"},{"id":"9ca682ef-c9ac-43e0-bca1-a723bd40010e","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"},{"id":"d194f062-6126-4273-bb75-52f5cf48a709","keyword":"正渗透","originalKeyword":"正渗透"},{"id":"d0c94b85-6010-440f-ba1a-6b8bfc4954b4","keyword":"再生","originalKeyword":"再生"}],"language":"zh","publisherId":"gfzclkxygc201508003","title":"多孔聚合物凝胶的合成及正渗透性能","volume":"31","year":"2015"},{"abstractinfo":"聚N-异丙基丙烯酰胺 (PNIPAAm)凝胶由于其大分子侧链上同时含有亲水性的酰胺基和疏水性的异丙基而成为一种典型的温敏性凝胶.但传统方法制备的PNIPAAm凝胶对环境温度的响应速率非常慢,因而限制了它在相关领域的应用效果.为克服这一不足,将多孔结构引入PNIPAAm凝胶是一种行之有效的方法.综述了近年来有关多孔PNIPAAm凝胶的制备方法,如相分离法、模板法、致孔剂法、聚合物互穿网络法、冷冻聚合法等的研究进展及各自的优缺点.","authors":[{"authorName":"杨桔","id":"ebaac170-a972-4adf-b8c8-74d83a92e223","originalAuthorName":"杨桔"},{"authorName":"霍丹群","id":"854851dd-4aba-446b-99c2-0f41d63b3325","originalAuthorName":"霍丹群"},{"authorName":"侯长军","id":"5502ff7e-1ab9-430e-9683-a100dabe4d5b","originalAuthorName":"侯长军"}],"doi":"","fpage":"62","id":"66ea0135-0b0f-4311-8b39-863a63f52287","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"182f73cd-7fce-4772-93fc-9dc8379b12e8","keyword":"聚N-异丙基丙烯酰胺","originalKeyword":"聚N-异丙基丙烯酰胺"},{"id":"80c9369d-23af-4ff5-bfb1-2bc99ff0e3ef","keyword":"温敏性","originalKeyword":"温敏性"},{"id":"86b231a0-5260-4059-a5fb-6a2d76c0bf67","keyword":"凝胶","originalKeyword":"水凝胶"},{"id":"e7c6a60e-d2cb-4da6-9dc3-427662e8c368","keyword":"多孔结构","originalKeyword":"多孔结构"},{"id":"5cbc67cf-5f30-49ae-82c6-83cbfbac2ea8","keyword":"响应速率","originalKeyword":"响应速率"}],"language":"zh","publisherId":"cldb201017013","title":"温敏性PNIPAAm多孔凝胶制备方法的研究进展","volume":"24","year":"2010"},{"abstractinfo":"采用冷冻聚合法制备了多孔结构的P(NI-PAm-co-AAm)智能凝胶,利用扫描电子显微镜和比表面积分析仪对凝胶多孔结构和表面形貌进行了测试,并测定了凝胶的平衡溶胀比、溶胀和退溶胀动力学,研究了不同预冷冻聚合时间对凝胶温度响应速率的影响,并且与传统方法制备的P(NIPAm-co-AAm)凝胶进行了响应速率对比试验.实验结果表明,冷冻聚合法制备的多孔P(NIPAm-co-AAm)凝胶其温度响应速率得到显著的提高,与传统方法合成的凝胶相比,冷冻聚合法合成的凝胶具有更为贯通的开孔结构,这些相互贯通的开孔结构为水分子进出水凝胶提供了通道,从而可提高凝胶的温度响应速率;预冷冻聚合时间对多孔P(NIPAm-co-AAm)凝胶的温度敏感性能影响很大,P(NIPAm-co-AAm)凝胶的平衡溶胀率(SR)随着时间的延长而减小,其最低临界相转变温度(LCST)受预冷冻聚合时间的影响不大,几乎都在35℃左右;温度响应速率随着预冷冻聚合时间的增大而减慢.","authors":[{"authorName":"杨桔","id":"5b51a544-bd62-4cb2-9e85-0d8277d5e4c0","originalAuthorName":"杨桔"},{"authorName":"霍丹群","id":"33a7d9f2-a140-4db4-941e-8f235ceaad6b","originalAuthorName":"霍丹群"},{"authorName":"侯长军","id":"5f49241f-0bc4-4875-ae75-f3a33948c055","originalAuthorName":"侯长军"},{"authorName":"杨眉","id":"d78ef601-0fc3-4215-8237-9ad07e78e47c","originalAuthorName":"杨眉"},{"authorName":"张国平","id":"a45e26e1-0541-4214-9811-deb22c0ffd7e","originalAuthorName":"张国平"},{"authorName":"张玉婵","id":"4bd3ba9c-e066-42ec-a9b4-d869e91f8985","originalAuthorName":"张玉婵"},{"authorName":"董家乐","id":"a69b08ad-943e-43c0-96cc-c1db94975df1","originalAuthorName":"董家乐"}],"doi":"","fpage":"343","id":"5d7dbdd0-ea2d-4d63-a8ca-4fc2eced7c11","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bf8f449f-f2c3-4068-a3af-3d0f8ceda606","keyword":"冷冻聚合法","originalKeyword":"冷冻聚合法"},{"id":"d67cb977-c2df-411b-9298-fdc622816cdf","keyword":"多孔","originalKeyword":"多孔"},{"id":"5269e21b-939e-4f3c-b23d-6416d799d630","keyword":"温敏凝胶","originalKeyword":"温敏水凝胶"},{"id":"aba5ec65-3148-42cf-9a15-49055f51fe4a","keyword":"N-异丙基丙烯酰胺","originalKeyword":"N-异丙基丙烯酰胺"}],"language":"zh","publisherId":"gncl201102040","title":"冷冻聚合法制备多孔P(NIPAm-Co-AAm)凝胶及其性能研究","volume":"42","year":"2011"},{"abstractinfo":"为制备兼顾多孔性和高强度的凝胶,本研究利用循环冷冻和冷冻干燥联用设计和制备了一系列聚乙烯醇凝胶.从聚乙烯醇溶液的浓度、循环冷冻次数、单次冷冻时长三个方面对凝胶的力学性能、内部微观形貌、含水量进行了研究.结果表明:以质量分数14%浓度的聚乙烯醇水溶液经过3次循环冷冻过程(16h冷冻,8h解冻)和液氮冷冻冰干后的支架,再经溶胀平衡后得到的PVA凝胶具有最佳的力学性能,此时PVA凝胶的拉伸强度为5.74MPa,断裂伸长率为347%;改变循环冷冻次数可有效地调节PVA凝胶的含水量;凝胶力学性能提高来源于体系结晶度的增大.","authors":[{"authorName":"周学华","id":"6c716331-ef86-4e14-9e40-358affb560d4","originalAuthorName":"周学华"},{"authorName":"刘克硕","id":"c5bb1b7b-2d50-463c-8b67-e1ddd11d780b","originalAuthorName":"刘克硕"},{"authorName":"叶海木","id":"686bda09-3cb9-4988-958c-2691be572203","originalAuthorName":"叶海木"},{"authorName":"周琼","id":"0b5bfae4-23f5-40cf-9af7-ebee23b193e9","originalAuthorName":"周琼"}],"doi":"","fpage":"16","id":"b28f0582-c9d2-455d-b0e2-b8fef39fcd81","issue":"4","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"42476edb-fad4-4808-98f8-c894c3f1ff9f","keyword":"PVA凝胶","originalKeyword":"PVA水凝胶"},{"id":"1c6d5eeb-8a22-4b37-80a2-da4d20ded3eb","keyword":"微孔结构","originalKeyword":"微孔结构"},{"id":"39f47417-dfeb-4d34-891d-3cf70c25873b","keyword":"循环冷冻法","originalKeyword":"循环冷冻法"},{"id":"7ac3e49e-578d-46ee-a303-d0331411c455","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"hccllhyyy201604004","title":"高强度多孔聚乙烯醇凝胶的制备","volume":"45","year":"2016"},{"abstractinfo":"以亚甲基双丙烯酰胺(MBA)为交联剂,CaCO3为致孔剂,通过N-异丙基丙烯酰胺(NIPA)与甲基丙烯酸钠(SMA)的溶液自由基聚合,制备了一系列多孔性热敏凝胶;利用环境扫描电镜观察了溶胀状态下的凝胶多孔结构,测定了凝胶的相转变温度、平衡溶胀率(SR)、热收缩动力学,并考察了致孔剂和交联剂的用量对上述性质的影响;与同条件合成的无孔凝胶相比,多孔凝胶的相变温度基本不变,但室温下SR增大了约50%,100 ℃时的热缩响应时间缩短至约3 min;同时,SR和温度响应灵敏度随致孔剂用量的增加而增加,而交联剂用量增加则使SR降低.","authors":[{"authorName":"何江川","id":"d4267f46-3947-491b-bb2a-486def340ac8","originalAuthorName":"何江川"},{"authorName":"林强","id":"dc47e9dc-4cab-4fa2-8565-a71cd5b1a0ac","originalAuthorName":"林强"}],"doi":"","fpage":"81","id":"2ee82e7b-660d-4c6a-b1a5-0792f57ef20d","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b05857cf-2f4a-402a-8819-9bcf7c82485a","keyword":"热敏凝胶","originalKeyword":"热敏水凝胶"},{"id":"b510c876-b382-4a3d-a946-28a518b3d112","keyword":"N-异丙基丙烯酰胺","originalKeyword":"N-异丙基丙烯酰胺"},{"id":"c43ca31c-8b50-4137-8ded-72121a619246","keyword":"致孔剂","originalKeyword":"致孔剂"},{"id":"9047579a-9869-4803-979b-7a190c38b634","keyword":"多孔性","originalKeyword":"多孔性"}],"language":"zh","publisherId":"gfzclkxygc200502019","title":"多孔性热敏凝胶P(NIPA-co-SMA)的合成及性质","volume":"21","year":"2005"}],"totalpage":2171,"totalrecord":21708}