{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"计算了某无人机复合材料机翼的静强度,使用局部应力-应变疲劳分析理论,基于正弦载荷激励,按照累积损伤理论和雨流计数法则,应用ANSYS/FE-SAFE软件,分析了此无人机机翼的疲劳寿命,为复合材料机翼疲劳分析提供了新的分析途径.","authors":[{"authorName":"姜年朝","id":"7b7ec613-c784-45e4-ae18-54d263fdc191","originalAuthorName":"姜年朝"},{"authorName":"谢勤伟","id":"890a6060-e185-49fe-b780-3b32bbec7546","originalAuthorName":"谢勤伟"},{"authorName":"戴勇","id":"88a231b1-b084-40b9-9c12-06e2f5f647cc","originalAuthorName":"戴勇"},{"authorName":"张志清","id":"18174157-ec55-40eb-9b5f-befa18d1c953","originalAuthorName":"张志清"},{"authorName":"王克选","id":"4fcf874b-da5a-4a72-843f-c9f91a2fc8f7","originalAuthorName":"王克选"},{"authorName":"宋军","id":"0707bdef-c815-4db8-88e2-b6becad8a27a","originalAuthorName":"宋军"},{"authorName":"李湘萍","id":"5f209880-7b22-4b6d-afcb-eeb1bd606a61","originalAuthorName":"李湘萍"}],"doi":"10.3969/j.issn.1003-0999.2009.06.001","fpage":"3","id":"6ffdfe42-013f-4c62-9272-f2547f567285","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"f01f5f7b-9d44-484e-84ab-1785e4c514a5","keyword":"无人机","originalKeyword":"无人机"},{"id":"ada3e3bf-cf26-4388-b8a0-72cb85b5f330","keyword":"复合材料机翼","originalKeyword":"复合材料机翼"},{"id":"955ea8ba-31cd-4e7a-8cdf-d9dc05a884e7","keyword":"ANSYS/FE-SAFE","originalKeyword":"ANSYS/FE-SAFE"},{"id":"f223663a-0b78-4298-b6b6-09140e7288bd","keyword":"疲劳分析","originalKeyword":"疲劳分析"}],"language":"zh","publisherId":"blgfhcl200906001","title":"基于ANSY/FE-SAFE的无人机复合材料机翼疲劳分析","volume":"","year":"2009"},{"abstractinfo":"应用红外探测技术跟踪记录了 2个纤维增强聚合物复合材料(FRP)加固混凝土试件界面的疲劳损伤发展过程,结合系列疲劳试验分析了界面的疲劳力学性能和疲劳寿命.结果显示FRP-混凝土界面粘结区和剥离区有明显的温度差异,应用红外探测技术可以较准确地检测界面的损伤发展状况.界而的疲劳损伤从跨中位置萌生后向一端扩展,损伤演化可分为萌生、稳定发展和失稳发展3个阶段,稳定发展阶段约占界面疲劳总寿命的99%左右.在界面疲劳寿命的主要阶段内界面的疲劳损伤较小,发展缓慢,FRP应力也变化平稳.表明加崮的抗疲劳效果较好.最后给出了界面疲劳寿命的预测方法,界面的疲劳破坏制约了FRP材料强度性能的充分利用.","authors":[{"authorName":"邓江东","id":"46f55985-d4c0-4bd6-b894-d1949beb52c2","originalAuthorName":"邓江东"},{"authorName":"宗周红","id":"ccb51344-9843-472c-ba11-540475b2032a","originalAuthorName":"宗周红"},{"authorName":"黄培彦","id":"42d25e33-0364-4ad2-8c97-910b3e280e75","originalAuthorName":"黄培彦"}],"doi":"","fpage":"155","id":"e1949b5a-061c-4c7c-bf8a-e3d750cbcf43","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"1aa9dcd3-f919-4693-b2b4-a35be19b8b94","keyword":"纤维增强聚合物复合材料","originalKeyword":"纤维增强聚合物复合材料"},{"id":"4fddab49-7df7-4c64-968a-8f246493b255","keyword":"混凝土结构加固","originalKeyword":"混凝土结构加固"},{"id":"d74798db-983d-459d-ab0f-28aba2b5cf62","keyword":"界面","originalKeyword":"界面"},{"id":"7d86745f-deb3-4ba3-88ed-a3db4a2eb533","keyword":"疲劳性能","originalKeyword":"疲劳性能"},{"id":"0f2631d5-5c85-4dbc-b18a-26ec790a74d8","keyword":"红外检测","originalKeyword":"红外检测"}],"language":"zh","publisherId":"fhclxb201001027","title":"FRP-混凝土界面疲劳性能分析","volume":"27","year":"2010"},{"abstractinfo":"某操纵杆在拉-拉疲劳试验过程中发生了早期疲劳断裂.对操纵杆断口的宏观特征、微观形貌以及金相组织进行了观察分析.结果表明,操纵杆的表面完整性较差是导致操纵杆早期疲劳断裂的主要原因.","authors":[{"authorName":"李运菊","id":"88324ea4-6d20-4b97-8b8c-15e08bb45db2","originalAuthorName":"李运菊"},{"authorName":"高威","id":"d8a2b67f-363b-4e77-ab1a-ec6d579c34ba","originalAuthorName":"高威"},{"authorName":"张卫方","id":"1920c82d-35e1-47f8-894a-db68c1d35a34","originalAuthorName":"张卫方"},{"authorName":"陶春虎","id":"babf116e-4768-4b96-af1c-f30ecf4bf003","originalAuthorName":"陶春虎"}],"doi":"10.3969/j.issn.1001-4381.2003.z1.030","fpage":"102","id":"4d1fb333-7571-4992-ab2c-952907fce7b5","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"e58dd031-0806-432d-9c3c-b2daea8bb3a1","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"fddc98ca-8be4-4691-938a-44a846a72b7b","keyword":"操纵杆","originalKeyword":"操纵杆"},{"id":"61d4689f-5f44-4963-ac75-51d805932e20","keyword":"疲劳断裂","originalKeyword":"疲劳断裂"},{"id":"3dcac8ba-8820-4b2c-b8ae-754728c0b766","keyword":"表面完整性","originalKeyword":"表面完整性"}],"language":"zh","publisherId":"clgc2003z1030","title":"操纵杆早期疲劳断裂分析","volume":"","year":"2003"},{"abstractinfo":"本文通过对喷丸、渗氮及碳氮共渗试样疲劳行为的研究,提出了金属内部疲劳极限的概念,指出内部疲劳极限约为表面疲劳极限(一般意义上的疲劳极限)的1.35倍,并利用这个概念分析了表面强化件的疲劳强度","authors":[{"authorName":"姚枚","id":"492499c3-61a3-4d8a-9f51-9d75630bd911","originalAuthorName":"姚枚"},{"authorName":"王声平","id":"1c91e645-b54a-4dc9-a1a1-5f7e21d08d53","originalAuthorName":"王声平"},{"authorName":"李金魁","id":"21231aca-ec5b-4247-8619-136f44b2e087","originalAuthorName":"李金魁"},{"authorName":"王仁智","id":"161e1fa7-34e0-4280-8a73-44631d6b84d9","originalAuthorName":"王仁智"},{"authorName":"李向斌","id":"923cd888-6fe6-47fd-868e-251a3d0577d5","originalAuthorName":"李向斌"}],"categoryName":"|","doi":"","fpage":"33","id":"23b3fa8e-d14a-47f5-a6a1-754ec5222bd5","issue":"11","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"aafc4ae6-e72b-4ebb-8f99-8db39e202e4a","keyword":"喷丸","originalKeyword":"喷丸"},{"id":"9746df70-aba1-4537-a7f5-9a570c453a0d","keyword":"nitriding","originalKeyword":"nitriding"},{"id":"252b3533-ae43-4da9-becf-40f29ab83f18","keyword":"carbonitriding","originalKeyword":"carbonitriding"},{"id":"f5d5ab02-76c7-4308-9cae-0f04f7ba8254","keyword":"fatigue limit","originalKeyword":"fatigue limit"}],"language":"zh","publisherId":"0412-1961_1993_11_3","title":"表面强化件的疲劳强度分析及金属的内部疲劳极限","volume":"29","year":"1993"},{"abstractinfo":"铁路道岔用钢轨经闪光对焊后做疲劳试验时发生早期疲劳断裂,开裂部位位于闪光对焊焊接热影响区内,且在轨脚处.为查明其原因,采用金相、扫描电镜及能谱仪对开裂原因进行分析,发现组织异常,且源区发生在灰斑区,从而产生早期断裂.","authors":[{"authorName":"李辉","id":"f30be4ab-b6d4-4b32-894f-23422785b94c","originalAuthorName":"李辉"},{"authorName":"邹本仁","id":"b37b1818-4953-4127-b447-6579edf930fb","originalAuthorName":"邹本仁"},{"authorName":"王立辉","id":"2f13f59c-3636-4ab8-8463-9f21fc16182a","originalAuthorName":"王立辉"},{"authorName":"韩晶","id":"ec42b6a0-99d8-4d72-a64d-7f834c8de479","originalAuthorName":"韩晶"},{"authorName":"温宝利","id":"e7d02876-9577-449c-9fe8-b86ca5ed523c","originalAuthorName":"温宝利"}],"doi":"","fpage":"31","id":"458de32a-2377-4c27-9e82-1a33fd9325c9","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"f3c69b20-ea21-4d20-9747-f6a2595e9080","keyword":"道岔","originalKeyword":"道岔"},{"id":"60e132f6-0936-48c5-83be-b4c25cd3bd33","keyword":"闪光对焊","originalKeyword":"闪光对焊"},{"id":"c485ec03-8e6b-4a6b-b286-9c14b9823b8c","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"969defde-d23e-476f-9fc1-4352e6d5ccc8","keyword":"断裂","originalKeyword":"断裂"}],"language":"zh","publisherId":"wlcs201005010","title":"铁路道岔疲劳断裂分析","volume":"28","year":"2010"},{"abstractinfo":"铁路道岔用钢轨经闪光对焊后做疲劳试验时发生早期疲劳断裂,开裂部位位于闪光对焊焊接热影响区内,且在轨脚处。为查明其原因,采用金相、扫描电镜及能谱仪对开裂原因进行分析,发现组织异常,且源区发生在灰斑区,从而产生早期断裂。","authors":[{"authorName":"李辉邹本仁王立辉","id":"b2d21b31-71ed-473d-9c9c-281b0bd1ad8a","originalAuthorName":"李辉邹本仁王立辉"}],"categoryName":"|","doi":"","fpage":"31","id":"775d33ce-a263-4159-bf3d-ae2193707ce7","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"248e8cee-323b-4839-9d67-0717067c4771","keyword":"道岔 闪光对焊 疲劳 断裂","originalKeyword":"道岔 闪光对焊 疲劳 断裂"}],"language":"zh","publisherId":"1001-0777_2010_5_11","title":"铁路道岔疲劳断裂分析","volume":"28","year":"2010"},{"abstractinfo":"针对用40Cr钢制造的重载车轮轴在试车过程中的断裂,具体分析了其宏观和微观断口形态以及轮轴各部位的显微组织特征等,特别就车轮轴断裂性质及其本质原因进行了相关分析和讨论.最终认为:轮轴的断裂属典型的旋转弯曲疲劳断裂,疲劳起源于轮轴根部.轮轴根部表面未经淬火,同时存在磨损条带和表面微裂纹,是导致了轮轴疲劳断裂的主要原因.","authors":[{"authorName":"曾静","id":"64640f6f-257c-480d-93f6-7876b9c134f5","originalAuthorName":"曾静"},{"authorName":"姚中海","id":"2baa24f9-8850-400c-ab64-4b9d88d918e0","originalAuthorName":"姚中海"},{"authorName":"吴立新","id":"96e139b5-9fc3-4703-911b-8fc2af61f31f","originalAuthorName":"吴立新"}],"doi":"","fpage":"54","id":"ca59a476-a599-4795-bb55-4007c7667125","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"b1f048f8-9e30-4c66-8de6-5579f48475f4","keyword":"轮轴","originalKeyword":"轮轴"},{"id":"abc1eb9f-2ce3-4048-abf9-a52fb3903586","keyword":"疲劳断裂","originalKeyword":"疲劳断裂"},{"id":"ac233e98-6085-433d-ba9b-1edaa7bb00fd","keyword":"表面淬火","originalKeyword":"表面淬火"},{"id":"841a9507-b7fc-408d-9b02-883ae03bfb57","keyword":"磨损条带","originalKeyword":"磨损条带"}],"language":"zh","publisherId":"wlcs200905016","title":"重载车轮轴疲劳断裂分析","volume":"27","year":"2009"},{"abstractinfo":"针对用40Cr钢制造的重载车轮轴在试车过程中的断裂,具体分析了其宏观和微观断口形态以及轮轴各部位的显微组织特征等,特别就车轮轴断裂性质及其本质原因进行了相关分析和讨论。最终认为:轮轴的断裂属典型的旋转弯曲疲劳断裂,疲劳起源于轮轴R8根部。轮轴R8根部表面未经淬火,同时存在磨损条带和表面微裂纹,是导致了轮轴疲劳断裂的主要原因。","authors":[{"authorName":"曾静\t姚中海\t吴立新\t孙宜强","id":"794f87ed-6421-40b7-9e66-23c835f6e8d0","originalAuthorName":"曾静\t姚中海\t吴立新\t孙宜强"}],"categoryName":"|","doi":"","fpage":"54","id":"ecfe8c0b-8335-474f-a550-a80a58ff3e9a","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"3edab87f-e85e-4add-8b2a-6f29bd1ac709","keyword":"轮轴","originalKeyword":"轮轴"},{"id":"022ae68f-79e2-4cd6-8783-7f0921786d85","keyword":"fatigue fracture","originalKeyword":"fatigue fracture"},{"id":"be589dae-a197-4945-8914-c4b3e96fc19a","keyword":"quench","originalKeyword":"quench"},{"id":"c17d06f8-b7e4-4cc3-8140-06dfca6985b9","keyword":"wearing band","originalKeyword":"wearing band"}],"language":"zh","publisherId":"1001-0777_2009_5_2","title":"重载车轮轴疲劳断裂分析","volume":"27","year":"2009"},{"abstractinfo":"采用实验测试与数值模拟相结合的方法对锡铅钎料和无铅钎料SAC305板级焊点分别在热疲劳和机械疲劳载荷作用下的破坏规律进行比较研究.结果表明:相对于传统锡铅钎料而言,常用无铅钎料(SAC305)焊点结构具有较为优异的抗热疲劳性能,然而其抗机械疲劳性能相对较差.由此,采用有限元方法分析了两种钎料焊点结构在热疲劳和机械疲劳过程中的塑性应变和蠕变应变演变过程,以探讨表面贴装板级焊点结构热疲劳和机械疲劳破坏过程的本质区别.","authors":[{"authorName":"林健","id":"af25993c-3092-4ce0-9929-59ea73d220cc","originalAuthorName":"林健"},{"authorName":"雷永平","id":"16e94f7e-fef6-45a0-b88a-d4e0bbb4ea8b","originalAuthorName":"雷永平"},{"authorName":"吴中伟","id":"10c28b90-1296-4dfe-9ac6-c5c11eb6bec5","originalAuthorName":"吴中伟"},{"authorName":"杨硕","id":"44239aa5-5f2b-48a6-ae51-dca63e3d2a77","originalAuthorName":"杨硕"}],"doi":"","fpage":"1874","id":"6ef1b651-c1dd-43a3-babe-58791b0af7df","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1cb8671d-6461-4e64-9010-d9198d55f288","keyword":"表面贴装结构","originalKeyword":"表面贴装结构"},{"id":"4b9e43ad-2460-43cb-b0c6-bc67c2efceb2","keyword":"板级焊点","originalKeyword":"板级焊点"},{"id":"841afc16-a01d-4d05-a7b4-cec301b9e693","keyword":"热疲劳","originalKeyword":"热疲劳"},{"id":"ff1b3032-1018-42e3-8e1b-85f0b2e9b5d3","keyword":"机械疲劳","originalKeyword":"机械疲劳"},{"id":"8004380b-7782-427a-9b6c-d46633f70047","keyword":"非弹性应变","originalKeyword":"非弹性应变"}],"language":"zh","publisherId":"xyjsclygc201309022","title":"板级焊点结构的热疲劳及机械疲劳性能分析","volume":"42","year":"2013"},{"abstractinfo":"研究激振频率对铝合金悬臂梁结构振动疲劳特性的影响.在不同激振频率下测试2024铝合金悬臂梁相同初始应力幅值下的振动疲劳寿命.利用体式显微镜及扫描电镜对疲劳断口进行微观分析.结果表明:初始应力相同时,处于共振状态的悬臂梁振动疲劳寿命最长,瞬断区面积最小.微观分析表明,疲劳裂纹源萌生于材料表面的最大应力区,在裂纹源区有明显的放射状条纹、贝壳线和大量刻面;在疲劳裂纹扩展区,除疲劳条带外,还观察到大量的二次疲劳裂纹;疲劳瞬断区则由大量韧窝构成,表现出典型的韧性断裂特征.微观分析可知合金内强化相颗粒对疲劳裂纹扩展有明显的阻碍作用.","authors":[{"authorName":"胡海涛","id":"77104085-ffb3-42cd-a4e5-51c4be447f1a","originalAuthorName":"胡海涛"},{"authorName":"李玉龙","id":"2d3520e5-508c-44c9-844e-9b089995b834","originalAuthorName":"李玉龙"},{"authorName":"索涛","id":"360f6b96-1188-4cd6-a6a2-da2d4b4196aa","originalAuthorName":"索涛"},{"authorName":"赵峰","id":"1b364245-c3b8-4835-9795-f6b7c994f02a","originalAuthorName":"赵峰"}],"doi":"10.3969/j.issn.1005-5053.2013.4.014","fpage":"78","id":"59feab2b-0d51-48a0-b74c-c772ff9e66b4","issue":"4","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"26c73759-f8b2-4410-86b1-673b63139372","keyword":"2024铝合金","originalKeyword":"2024铝合金"},{"id":"4f802bce-6374-442a-8d2f-35ebbd2071b6","keyword":"振动疲劳","originalKeyword":"振动疲劳"},{"id":"2d328873-cf96-4c37-b9f7-4f498a3bbe14","keyword":"固有频率","originalKeyword":"固有频率"},{"id":"9ca21dd3-8b6a-4b0a-9ddb-d6230bc10739","keyword":"疲劳断口","originalKeyword":"疲劳断口"}],"language":"zh","publisherId":"hkclxb201304014","title":"2024铝合金振动疲劳特性及断口分析","volume":"33","year":"2013"}],"totalpage":8603,"totalrecord":86025}