{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本刊2012年第五期第801页刊登了熊等作者的论文,这是本刊编辑部自创刊以来收到的第一篇这样的论文,该文对本刊在材料科学期刊中所处的地位及面临问题、发展方向作出如此客观、中肯的评价与指引,均使编辑部成员十分感动。今年恰是本刊创刊30周年纪念,谨以此《编后记》供奉广大读者,","authors":[{"authorName":"无","id":"6eb4c714-a474-4cd0-b393-f0306b138318","originalAuthorName":"无"}],"doi":"","fpage":"714","id":"70565a37-1b6d-4b46-9b09-eb71030a22e8","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b4b988f9-967f-4530-817f-d29f1623cfa2","keyword":"科学评价","originalKeyword":"科学评价"},{"id":"614f8cc5-6336-4065-b303-26b67f81d1be","keyword":"论文","originalKeyword":"论文"},{"id":"bf3cdaa0-4927-4d1a-a122-779ead854c34","keyword":"作者","originalKeyword":"作者"},{"id":"54d5797b-6f47-4f76-9527-3b32105f0299","keyword":"务实","originalKeyword":"务实"},{"id":"2124d564-90da-4a58-85da-22654e0d5dd2","keyword":"科学期刊","originalKeyword":"科学期刊"},{"id":"1dee1687-be42-4d28-aed7-6cd29a5c6883","keyword":"编辑部","originalKeyword":"编辑部"},{"id":"b28e651a-8495-4eba-87c6-79d47b81d924","keyword":"创刊","originalKeyword":"创刊"}],"language":"zh","publisherId":"clkxygc201205014","title":"科学评价,务实求真——熊等作者的论文编后记","volume":"30","year":"2012"},{"abstractinfo":"层状结构TiS_2具有准二维结构,高热电势(室温时S≈250μV/K)和大的热电功率因子,作为热电材料具有很好的开发和应用前景.通过固相反应法,我们分别用原子量大于和小于Ti的原子部分替代Ti位引入替位缺陷(Ni_(Ti)\",Al_(Ti)',Mg_(Ti)\"),合成了不同元素替代掺杂化合物M_(0.04)Ti_(0.96)S_2(M=Ni,Al,Mg),在5-310K的温度范围内研究了各化合物的电阻率、热导率及热电势率与温度的对应关系.结果表明Ni、Al、Mg三种元素的掺杂均引起了主体材料从金属性到半导体导电性质的转变,且在低温范围内呈现莫特二维变程跳跃电导规律,In σ∝T~(-1/3),表明了TiS_2的二维导电机制.值得注意的是:①Mg、Al的掺杂引起了热电势绝对值的显著增高,特别是Al掺杂的化合物在310K时热电势率为-500μV/K,达到了纯TiS_2的200%;②Ni掺杂也在整个研究温区引起热导率的明显下降,而Mg、Al的掺杂却在整个研究温区引起热导率的明显升高.由于电阻率的增大,Ni、Al的掺杂均没能使得材料的ZT值有所提高,而Mg的掺杂明显地提高了TiS_2的ZT值,在310K其ZT值是纯TiS_2的1.6倍.这表明元素掺杂是提高材料的热电优值的有效途径之一.","authors":[{"authorName":"张建","id":"a3813c79-175e-43a8-a450-8869c507cdaa","originalAuthorName":"张建"},{"authorName":"","id":"d8b276aa-2aee-4351-bb0c-ab63bd9c87ca","originalAuthorName":"秦晓英"},{"authorName":"李地","id":"9bcefe9d-cae6-4106-aa85-5bd2299d67ea","originalAuthorName":"李地"},{"authorName":"辛红星","id":"1c4b7dd0-0f32-43e4-82c3-7843c80d8c1e","originalAuthorName":"辛红星"},{"authorName":"宋春军","id":"f62e92a4-249c-4f56-99ee-51aff27c718c","originalAuthorName":"宋春军"}],"doi":"","fpage":"237","id":"1baa311b-0b61-4502-99bf-d8dacc610afd","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"9735a955-5e58-4b84-8a67-b1ad0d0be542","keyword":"TiS_2","originalKeyword":"TiS_2"},{"id":"a962e74b-7324-48be-984a-31ee83c13a19","keyword":"热电","originalKeyword":"热电"},{"id":"3471c1dc-db1b-4f6b-86ea-c61c6751cb18","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"f40e86d7-9a9e-43c9-8cc4-e6e221b2ee8f","keyword":"热导率","originalKeyword":"热导率"}],"language":"zh","publisherId":"clkxygc201002018","title":"不同元素替代掺杂化合物M_(0.04)Ti_(0.96)S_2(M=Ni,Al,Mg)的热电性质","volume":"28","year":"2010"},{"abstractinfo":"综述了机械球磨法制备纳米结构材料及其性能研究的最新研究进展.","authors":[{"authorName":"刘银","id":"fe892e5d-405f-4a82-9142-346da43d595a","originalAuthorName":"刘银"},{"authorName":"王静","id":"b2083043-b761-4116-a27a-bf8fe9079162","originalAuthorName":"王静"},{"authorName":"张明旭","id":"1c319aee-052a-4790-81c8-9a819d1fbbdb","originalAuthorName":"张明旭"},{"authorName":"","id":"23130bf6-1fbb-49e4-892c-2a885b33642f","originalAuthorName":"秦晓英"}],"doi":"","fpage":"20","id":"309ca5fd-955e-4d73-a62b-e962a9bc88f7","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a7934a4f-f590-4a42-a6d6-337407277b1f","keyword":"机械球磨法","originalKeyword":"机械球磨法"},{"id":"5b6b0845-5be9-475a-a400-e9aa549d815b","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"b35ac600-fb2a-4885-8d53-289b2e4a4d80","keyword":"制备","originalKeyword":"制备"},{"id":"e50c67f3-7e2a-4b04-948e-42e70f31c33e","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"cldb200307006","title":"机械球磨法制备纳米材料的研究进展","volume":"17","year":"2003"},{"abstractinfo":"本文对多晶NiAl以及不同粒径的NiAl样品的磁性进行了研究.结果表明:大块多晶NiAl合金的磁化率X很小.大约为3×10-5/g,其比磁化强度σ几乎不随温度变化,在1.5-150K温度范围,平均粒径为8.6nm的制备态纳米NiAl的σ随温度的增高而显著下降,由σ-T曲线可得到其居里温度Tc为124K.制备态的纳米NiAl经退火处理后得到的平均粒径分别为12,18和21nm的三种样品的σ比普通多晶NiAl高两个量级,而且在1.5—300K温度范围,σ随温度变化很小.表明多晶NiAl合金在其晶粒纳米化后发生了非磁性-磁性转变。","authors":[{"authorName":"侯碧辉","id":"b2ccabb3-0c33-46dd-b33d-1797055843d5","originalAuthorName":"侯碧辉"},{"authorName":"易俗","id":"93cea451-88c1-4e7b-bd2d-412e5eeb71f8","originalAuthorName":"易俗"},{"authorName":"","id":"888692ac-6ebb-4117-a389-7eccc2a56968","originalAuthorName":"秦晓英"},{"authorName":"沈保根","id":"b9acd5ce-10e6-462c-aa27-42778bef0eee","originalAuthorName":"沈保根"},{"authorName":"纪小丽","id":"2e2672df-c240-4179-ab94-eeae474a2166","originalAuthorName":"纪小丽"},{"authorName":"张立德","id":"96ff5fcb-366d-4619-a3b7-b0ce41ad726c","originalAuthorName":"张立德"}],"categoryName":"|","doi":"","fpage":"427","id":"335339dd-6fb3-4600-b8cd-46904b5196e6","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7db7ea19-0d1a-4d29-ac1b-3b0925e0ce9f","keyword":"纳米NiAl","originalKeyword":"纳米NiAl"},{"id":"007090f9-2f5a-4923-9b56-aecdbb616e2d","keyword":" nonmagnetism-magnetism transition","originalKeyword":" nonmagnetism-magnetism transition"},{"id":"b6724555-219a-4233-905b-f5a72e0da999","keyword":" metal magnetism","originalKeyword":" metal magnetism"}],"language":"zh","publisherId":"0412-1961_1997_4_7","title":"NiAl多晶—纳米晶的磁性转变","volume":"33","year":"1997"},{"abstractinfo":"采用机械合金化结合热压的方法,制备了纳米晶(Mg_(0.97)X_(0.03))_3Sb_2(X=Mg、Cr、Cu、Ti),进行了微结构表征和电阻率测量.结果表明其平均晶粒尺寸不超过40nm.(Mg_(0.96)X_(0.03))_3Sb_2晶体结构四面体位置的Mg-Sb结合距离变短,共价性增强.室温电阻从543Ωcm(Mg_3Sb_2)下降到137Ωcm((Mg_(0.97)Cr_(0.03))_3Sb_2)、121Ωcm((Mg_(0.97)Ti_0.03))_3Sb_2)、109Ωcm((Mg_(0.97)Cu0.03)_3Sb_2).替代样品的电阻在低温时为变程跳跃电导.电阻率的降低是由于替代形成的晶格中化学环境变化,原子间结合强度增加所致.","authors":[{"authorName":"辛红星","id":"8db963a8-f07b-405b-b998-4b9b49836295","originalAuthorName":"辛红星"},{"authorName":"","id":"4a92a27c-ebaa-4311-a8a9-a8b9716fa6f2","originalAuthorName":"秦晓英"},{"authorName":"张宽心","id":"a2d061ac-94d3-4353-b4bf-dd8f61f305e6","originalAuthorName":"张宽心"},{"authorName":"宋春军","id":"7e349f4c-c58d-476c-a056-f190b729108f","originalAuthorName":"宋春军"},{"authorName":"张建","id":"7ed66479-39b8-4a25-9f43-ab757675a794","originalAuthorName":"张建"},{"authorName":"朱光","id":"c1d95125-45af-4e6d-a167-1dd9ca94163a","originalAuthorName":"朱晓光"}],"doi":"","fpage":"244","id":"66f76947-7cc7-4e2d-8f4f-1826f6cccef8","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"daf9f2aa-ec50-4926-abca-8264b475becf","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"945d32cf-4c81-49d7-b0cd-ffb6d3d191a4","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"09ab30bb-8b4c-445f-af96-6a403580b741","keyword":"替代","originalKeyword":"替代"},{"id":"bb41786e-eece-4536-a82d-341e5c9ae2e1","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"d0a4c5f1-ec30-4e48-b799-61c47e490f80","keyword":"变程跳跃电导","originalKeyword":"变程跳跃电导"}],"language":"zh","publisherId":"clkxygc201002019","title":"Zintl相热电材料纳米晶(Mg_(0.97)X_(0.03))_3Sb_2的低温电输运性能","volume":"28","year":"2010"},{"abstractinfo":"我们成功的制备出了含不同成分尿素的夹层化合物(NH2CONH2)xTiN2并研究了它们在低温(5~310K)下的热、电输运性质.夹层后晶格常数、热、电输运行为的变化也证实了尿素分子成功的夹层到TiS2的范德华尔斯层间.研究结果表明:尿素分子的夹层成功的降低了材料的热导率,特别是在浓度为12.5mmol/L尿素的苯溶液中合成的样品的热导率大约1.5Wm^-1K^-1(仅为纯TiS2的50%),而且尿素分子的夹层使得材料在低温下的导电行为从金属性转变为半导体性.","authors":[{"authorName":"张建","id":"a5c73aae-f8b3-4799-b9ad-946455522f55","originalAuthorName":"张建"},{"authorName":"","id":"27454975-dd59-4b75-9528-9c67b995c465","originalAuthorName":"秦晓英"},{"authorName":"董华泽","id":"50d55249-deae-47c3-890a-783f4c751ad5","originalAuthorName":"董华泽"},{"authorName":"李地","id":"e60028ab-a32d-4c88-b8af-85c112b0189c","originalAuthorName":"李地"},{"authorName":"辛红星","id":"a0b68b7c-fcd2-4f24-9ff0-d1ff734c43cd","originalAuthorName":"辛红星"},{"authorName":"宋春军","id":"9bd3e7b2-b33d-49eb-a843-c5b160c188b7","originalAuthorName":"宋春军"}],"doi":"","fpage":"94","id":"7af55040-d94d-4cb0-9b3d-bb2018d78d4d","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"8208f805-465b-4882-a7ee-1b7ca4bffc77","keyword":"热导率","originalKeyword":"热导率"},{"id":"3b4d913a-9459-4093-a700-3fcea7835596","keyword":"夹层","originalKeyword":"夹层"},{"id":"1c6fd5f0-1d20-437d-9886-c754a756439a","keyword":"TiS2","originalKeyword":"TiS2"}],"language":"zh","publisherId":"dwwlxb201202004","title":"尿素夹层二硫化钛化合物的合成及其热、电输运性质研究","volume":"34","year":"2012"},{"abstractinfo":"采用机械激活固相反应及真空热压方法制备纳米晶Mg2Si金属间化合物块体材料.研究表明,过量Mg配量对获得纯相Mg2Si至关重要.在1.5GPa压力于450℃热压得到的纯相Mg2Si纳米块体(相对密度D~98%,晶粒度d~54nm)断裂韧性达1.67MPa·m1/2,较常规粗晶Mg2Si有明显提高.","authors":[{"authorName":"王莉","id":"01376d38-e3bf-4c3b-bf35-55b6ef79f78a","originalAuthorName":"王莉"},{"authorName":"","id":"89ce4af0-f435-4360-b176-d7ede2923517","originalAuthorName":"秦晓英"},{"authorName":"朱光","id":"d8f77fc1-9cef-4a08-85fd-5fd3a0b45496","originalAuthorName":"朱晓光"},{"authorName":"张建","id":"2d588d4b-238d-49d1-a5e1-a109c58fe3f0","originalAuthorName":"张建"}],"doi":"","fpage":"31","id":"aa391e30-67aa-4f54-b5f6-53aa5a5dbe00","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f180a3c7-d4a4-47a0-a3f7-15dd07051eaa","keyword":"Mg2Si","originalKeyword":"Mg2Si"},{"id":"b977975d-b311-48fc-b1b7-c2b51b05d316","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"6a9a86c2-d4d8-4bc7-b93e-f1c1e5915fbd","keyword":"真空热压","originalKeyword":"真空热压"}],"language":"zh","publisherId":"cldb2008z1010","title":"纳米晶Mg2Si块体的制备及力学性能","volume":"22","year":"2008"},{"abstractinfo":"用X射线衍射及透射电镜研究用惰性气体凝聚法制备纳米NiAl合金固体的结构结果表明,纳米NiAl合金晶体结构与常规NiAl结构一致,平均粒度为8.6nm,具有较大的晶格(显微)畸变(ε=1.2%),长程有序度有所降低。退火实验显示,当温度低于800K时晶粒不明显长大,具有较好的抗晶粒生长能力。磁共振及磁化研究表明,当NiAl合金制成纳米结构后由弱(或非)磁性转变为强磁性,这种磁性转变可能与具较大的晶格畸变及长程有序度的破坏有关。","authors":[{"authorName":"","id":"50ab0cbe-3ce8-4317-86c0-b0f18d45d864","originalAuthorName":"秦晓英"},{"authorName":"张立德","id":"c2258675-0fd3-4a73-847e-a6b2f695226f","originalAuthorName":"张立德"},{"authorName":"侯碧辉","id":"da87bdcc-7ce6-4561-a980-beb0644d4c70","originalAuthorName":"侯碧辉"},{"authorName":"梁任又","id":"aa0aedb7-546b-45ce-af9a-5c773967a1e0","originalAuthorName":"梁任又"},{"authorName":"纪小丽","id":"9a9ea5f9-8150-4734-b99b-cce80452d811","originalAuthorName":"纪小丽"}],"categoryName":"|","doi":"","fpage":"303","id":"adc73d51-34f2-4d8b-94e4-5c7b77ac5cb2","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"dc55df59-9882-43ab-b803-67e3426679df","keyword":"纳米固体","originalKeyword":"纳米固体"},{"id":"294f7664-753b-4f36-9b5d-f62353259bc4","keyword":" NiAl alloy","originalKeyword":" NiAl alloy"},{"id":"3d816a4b-49c2-4282-aea3-89a744d81c03","keyword":" structure","originalKeyword":" structure"},{"id":"df27b1d1-2fe5-4061-b1fc-eb00794d259b","keyword":" magnetism","originalKeyword":" magnetism"}],"language":"zh","publisherId":"0412-1961_1996_3_6","title":"惰性气体凝聚法制备纳米NiAl合金的结构及磁特性","volume":"32","year":"1996"},{"abstractinfo":"用机械化学及热压烧结方法成功制备了高致密Ni-20Fe/Al2O3纳米复合材料.通过X-ray、FE-SEM、力学性能、磁性能测试,结果表明,复合后材料断裂韧性从纯α-Al2O3相的4.7 MPa·m1/2提高到6.2 MPa·m1/2(19%(Ni-20Fe)/Al2O3),断裂方式有沿晶断裂和穿晶断裂两种.当Ni-20Fe合金的体积百分数达到19%时,复合材料的饱和磁化强度达33 emu/g,矫顽力为200 Oe,且在低于500℃的情况下,矫顽力基本不随温度而变,具有良好的磁热稳定性.","authors":[{"authorName":"李合琴","id":"d5318e10-5996-43b8-99d0-8e4bcfdc9330","originalAuthorName":"李合琴"},{"authorName":"何雄","id":"827b5e1d-501e-4e5d-94a3-d1eaf0a0b235","originalAuthorName":"何晓雄"},{"authorName":"曹闰","id":"9ecf7fb3-bf81-42cf-96a7-6ace62a30a0a","originalAuthorName":"曹闰"},{"authorName":"","id":"8345cedc-41d6-40f3-b248-08c9ba2c5297","originalAuthorName":"秦晓英"}],"doi":"10.3321/j.issn:1000-3851.2006.03.020","fpage":"103","id":"11a757ee-cddf-4857-9c45-76b897ab1ff6","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5c1cfa16-2971-4f9b-822a-e90ec7544c14","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"bf8c0431-6d88-4838-a5a2-a433d7f0336c","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"a0a97223-6eaa-4652-9133-cf4cd3ac323a","keyword":"Ni-20Fe合金","originalKeyword":"Ni-20Fe合金"},{"id":"ed2d3f4a-32d1-4a11-851e-04335953f49e","keyword":"饱和磁化强度","originalKeyword":"饱和磁化强度"},{"id":"e6662f6e-df71-4787-9548-8a8e4d7c9111","keyword":"机械性能","originalKeyword":"机械性能"}],"language":"zh","publisherId":"fhclxb200603020","title":"纳米Ni-20Fe颗粒增韧Al2O3复合材料的力学性能与磁性能","volume":"23","year":"2006"},{"abstractinfo":"采用机械球磨和真空热压相结合的方法,在1.5GPa压力下于400℃热压1h制得纳米晶Mg2Si金属间化合物块体.纳米晶Mg2Si块体晶粒度为30nm,致密度为91.45%.采用原位高温XRD对纳米Mg2Si块体的热稳定性进行了研究.纳米晶Mg2Si块体在700℃、800℃和900℃时晶粒的生长指数分别为6、5和4,说明其具有良好的热稳定性.","authors":[{"authorName":"王莉","id":"0ee5e255-f479-4342-9527-17c1b65566e6","originalAuthorName":"王莉"},{"authorName":"","id":"9075fff8-03e8-4d19-9e37-5b46b2d685f3","originalAuthorName":"秦晓英"},{"authorName":"梁齐","id":"a554ae72-54ea-4b5b-9203-d43c0a375fd5","originalAuthorName":"梁齐"}],"doi":"","fpage":"47","id":"1d8f8820-4f09-4802-a09c-df89f6131ecd","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8082fbf3-915b-4eec-8a7d-32639ebe0b9f","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"1d2acb89-3d23-46c5-9e99-46d975028759","keyword":"金属间化合物","originalKeyword":"金属间化合物"},{"id":"18045841-e141-4d2b-bbbc-6bb0372b2b19","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"e4b536f5-75a6-44ae-b4a7-9f4f9e2e9e9a","keyword":"Mg2Si","originalKeyword":"Mg2Si"}],"language":"zh","publisherId":"cldb200908015","title":"纳米Mg2Si块体的制备及其热稳定性的研究","volume":"23","year":"2009"}],"totalpage":23,"totalrecord":227}