{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用有限元分析软件ANSYS建立了微弧氧化时AZ40M镁合金试样、辅助阳极及周围电解液环境的有限元模型,对其进行静电场中电场强度与焦耳热的有限元模拟,得出试样设置辅助阳极前后的电场强度及焦耳热分布云图,分析辅助阳极对试样表面电场强度均匀性的影响.将模拟结果与实际试验结果进行对比,认为辅助阳极的设置可以有效解决微弧氧化过程中边缘烧蚀的问题.","authors":[{"authorName":"曹克宁","id":"b7d4eac7-c7ce-4f59-99a5-5a73f7b5abc0","originalAuthorName":"曹克宁"},{"authorName":"白晶莹","id":"196d9314-d667-4ac6-bc63-4eb026767e88","originalAuthorName":"白晶莹"},{"authorName":"张立功","id":"660e9992-97a8-4a9f-9d42-521d9c579920","originalAuthorName":"张立功"},{"authorName":"王景润","id":"ad056ca1-837b-4add-9e54-7d3598cd11f2","originalAuthorName":"王景润"},{"authorName":"李思振","id":"eabadd01-6605-4d10-b321-7497b6f86781","originalAuthorName":"李思振"},{"authorName":"冯立","id":"eaa385cc-3886-47aa-94b1-d21eb7f883e5","originalAuthorName":"冯立"}],"doi":"","fpage":"35","id":"a045b904-9035-45a6-9f77-4eb042233aa2","issue":"11","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"770ae1dc-c0b9-4ac9-84a1-683f159a9224","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"30615014-e65d-4d65-9539-85118e285176","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"04ece7c8-2051-4af7-bc5b-3433af139bfe","keyword":"边缘烧蚀","originalKeyword":"边缘烧蚀"},{"id":"db877a88-ce57-48e9-bd49-3b4d80eec8a9","keyword":"辅助阳极","originalKeyword":"辅助阳极"},{"id":"16b17770-9e33-428f-941d-c0294ec6c29e","keyword":"有限元法","originalKeyword":"有限元法"},{"id":"cf0fae3a-474d-434a-a1c8-bd417fee01c9","keyword":"模拟","originalKeyword":"模拟"},{"id":"c6377297-42a0-4d51-9d50-9ca4150e7d34","keyword":"电场强度","originalKeyword":"电场强度"}],"language":"zh","publisherId":"ddyts201311010","title":"镁合金微弧氧化边角烧蚀的ANSYS仿真研究","volume":"32","year":"2013"},{"abstractinfo":"采用等离子喷涂技术成功在坯体密度为1.8 g/cm3炭/炭复合材料上面制备厚度为1.2 mm与基体结合良好的较致密的W涂层的试样.利用氧乙炔焰分别测试其在30 s、60 s、90 s和120 s下的烧蚀性能.结果表明:试样的质量烧蚀率和线烧蚀率均随时间的增加而增加.其中,最大质量烧蚀率和线烧蚀率分别为7.8 μg/s和3.5μm/s.XRD、SEM分析表明:在烧蚀中心区,涂层试样的烧蚀以升华分解为主,同时,还伴有氧化烧蚀和微区机械剥蚀;在烧蚀过渡区,涂层的烧蚀机制以热氧化和燃气冲刷为主;而在烧蚀边缘区,涂层的烧蚀则主要表现为弱氧化烧蚀.","authors":[{"authorName":"周哲","id":"9af5bd2e-1389-4a97-833e-3545a808b90c","originalAuthorName":"周哲"},{"authorName":"葛毅成","id":"7e7c19bc-b499-4e23-b03c-ce6b34b78ff7","originalAuthorName":"葛毅成"},{"authorName":"汪沅","id":"58208c91-b471-452b-8b2d-ebe664efd34f","originalAuthorName":"汪沅"},{"authorName":"龚洁明","id":"3607e4c3-c1de-4dc2-a6bf-a7df0007806a","originalAuthorName":"龚洁明"},{"authorName":"易茂中","id":"6cc6977e-a897-4e6f-9c37-80cdd7096241","originalAuthorName":"易茂中"}],"doi":"","fpage":"1272","id":"a20870c6-0a6e-4aae-997e-50c3d075e60c","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"7d632772-cdf5-4d4f-8549-9e3ae4949e0a","keyword":"大气等离子喷涂","originalKeyword":"大气等离子喷涂"},{"id":"a70911d7-d3a7-42b8-85c2-d837879a80b8","keyword":"耐烧蚀","originalKeyword":"耐烧蚀"},{"id":"d0cf436a-6ca9-4cbb-b0f8-8c2082d3428f","keyword":"W涂层","originalKeyword":"W涂层"},{"id":"bc818574-ef5d-4952-b654-d933f409535c","keyword":"炭/炭复合材料","originalKeyword":"炭/炭复合材料"}],"language":"zh","publisherId":"zgysjsxb201606015","title":"炭/炭复合材料耐烧蚀W涂层","volume":"26","year":"2016"},{"abstractinfo":"利用等离子体火炬为高温热源,研究了混杂C/C复合材料的烧蚀性能.结果表明:随着烧蚀区域从火焰中心到边缘的变化,材料的烧蚀特性从中心区域的以热力学烧蚀为主向靠近边缘区域的以热化学烧蚀为主过渡;碳基体和碳纤维的抗热力学烧蚀性能相当,而碳纤维的抗热化学烧蚀特性则明显优于碳基体.","authors":[{"authorName":"韩杰才","id":"b4bd5b95-ecdc-4e63-a908-67ddbd65c965","originalAuthorName":"韩杰才"},{"authorName":"徐强","id":"1ddb528b-f5c3-4fea-a147-f9af561aad4f","originalAuthorName":"徐强"},{"authorName":"张巍","id":"2628207d-8e24-4112-a764-7fc1698c64f0","originalAuthorName":"张巍"},{"authorName":"孟松鹤","id":"a3ffd349-d54b-43f5-932c-f85fe6034017","originalAuthorName":"孟松鹤"}],"doi":"","fpage":"805","id":"1c8c03a8-d93f-4462-bf1a-80f8353119cd","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"72b65d1f-7cd9-4dc6-b6a1-5b1520f58eb2","keyword":"混杂C/C复合材料","originalKeyword":"混杂C/C复合材料"},{"id":"f429327b-318b-4bef-950b-7e507c2e49b2","keyword":"等离子火炬","originalKeyword":"等离子火炬"},{"id":"8f4628f0-7df5-4464-bc62-ce2354aeeed7","keyword":"烧蚀性能","originalKeyword":"烧蚀性能"}],"language":"zh","publisherId":"xyjsclygc2007z1227","title":"混杂C/C复合材料的烧蚀性能","volume":"36","year":"2007"},{"abstractinfo":"采用CVI制备了三维针刺C/SiC复合材料,利用等离子烧蚀对复合材料的烧蚀性能进行了分析.结果表明:复合材料的线烧蚀率和质量烧蚀率分别为131.3μm/s和74.2 g/s,对应的标准偏差分别为4.9μm/s和4.7 mg/s.微结构观察显示烧蚀表面不同区域其烧蚀机理不同,烧蚀中心以升华烧蚀为主,过渡区主要是升华烧蚀和等离子流的剪切剥蚀为主,而烧蚀边缘则以热氧化为主.","authors":[{"authorName":"聂景江","id":"241d18d7-712c-4be0-9f19-296bb9e8e767","originalAuthorName":"聂景江"},{"authorName":"徐永东","id":"ed165543-0987-42d8-8432-3ee3369fdaed","originalAuthorName":"徐永东"},{"authorName":"张立同","id":"76b1af86-cc44-4180-b83f-f9f9d8015e81","originalAuthorName":"张立同"},{"authorName":"成来飞","id":"160d39c1-8ae8-4314-bfe8-6a9608785c30","originalAuthorName":"成来飞"},{"authorName":"马军强","id":"041f0050-5adc-4614-8f20-839454d44f9b","originalAuthorName":"马军强"}],"doi":"10.3969/j.issn.1007-2330.2009.01.016","fpage":"53","id":"fe592095-7287-41ea-adf7-ff3c43232afc","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"e934275b-a282-42a6-bb1c-387447c06d4c","keyword":"三维针刺","originalKeyword":"三维针刺"},{"id":"41d197cc-ab8b-4e69-ab19-226ab3991122","keyword":"C/SiC","originalKeyword":"C/SiC"},{"id":"1aefdad0-5dba-489f-8686-b7edca099101","keyword":"等离子烧蚀","originalKeyword":"等离子烧蚀"}],"language":"zh","publisherId":"yhclgy200901016","title":"三维针刺C/SiC在等离子焰中的烧蚀行为","volume":"39","year":"2009"},{"abstractinfo":"研究了碳布增强新型耐烧蚀树脂聚芳基乙炔(PAA)材料的烧蚀性能和力学性能, 并与钡酚醛和硼酚醛进行比较.结果表明,PAA树脂的残碳率高于钡酚醛和硼酚醛树脂,C/PAA材料烧蚀性能优异,氧-乙炔线烧蚀率为0.012 mm/s、质量烧蚀率为0.0166 g/s,但其力学性能较差.","authors":[{"authorName":"闫联生","id":"8eebc13c-fda1-465d-b2a1-f827cfed9828","originalAuthorName":"闫联生"},{"authorName":"姚冬梅","id":"9005f35e-628f-4229-b0bf-a890cb7ba091","originalAuthorName":"姚冬梅"},{"authorName":"杨学军","id":"260a44f0-a39e-4daf-8950-38250e60cb22","originalAuthorName":"杨学军"}],"doi":"10.3969/j.issn.1007-2330.2002.02.007","fpage":"29","id":"e76fa656-3b65-465c-be60-eafe95564147","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b2500eda-0508-4623-b518-f8eec1b1e12e","keyword":"烧蚀材料","originalKeyword":"烧蚀材料"},{"id":"1278ca20-e769-440f-b66b-3d94d09c3c24","keyword":"PAA","originalKeyword":"PAA"},{"id":"1606b3c3-27ff-4b1a-89d7-768ba797c72b","keyword":"剪切强度","originalKeyword":"剪切强度"}],"language":"zh","publisherId":"yhclgy200202007","title":"新型耐烧蚀材料研究","volume":"32","year":"2002"},{"abstractinfo":"采用等离子喷涂工艺在C/SiC基体材料表面制备了较为致密的W粘结层和ZrC耐烧蚀涂层,利用氧乙炔火焰测试其抗烧蚀性能.结果表明:涂层具有良好的抗烧蚀性能.经烧蚀距离30 mm的氧乙炔烧蚀300 s后,涂层的质量烧蚀率为1.7×10-3 g·s-1,仅为无涂层试样的68%;线烧蚀率为4.0×10-4 mm·s-1,仅为无涂层试样的30%.随着烧蚀距离的减小,涂层的质量烧蚀率不断增大,线烧蚀率不断减小.试样表面温度梯度导致涂层存在3种典型烧蚀形貌,中心致密区,过渡区以及边缘疏松区.温度较高的中心区氧化产物为WO3,其发生熔融并填充涂层内部孔隙和裂纹,形成致密层,且与ZrO2所产生的协同效应有效降低了机械剥蚀几率,烧蚀以热化学烧蚀为主;温度较低的边缘区烧蚀产物未发生熔融且呈现疏松状,烧蚀主要表现为热化学烧蚀和机械剥蚀.","authors":[{"authorName":"文波","id":"290270c7-2a66-4ae8-a1b2-f7d8fb190c47","originalAuthorName":"文波"},{"authorName":"马壮","id":"4dbfe37f-1ac0-468e-b5f9-d05479ac7f8f","originalAuthorName":"马壮"},{"authorName":"柳彦博","id":"ebab1ed7-5b61-416b-b39b-ebad170a2ed4","originalAuthorName":"柳彦博"},{"authorName":"王富耻","id":"af2c8862-162b-494d-9162-59eca1833550","originalAuthorName":"王富耻"},{"authorName":"才鸿年","id":"1e41328e-1d7b-4e23-870f-ba84f063c01f","originalAuthorName":"才鸿年"}],"doi":"","fpage":"2782","id":"bb74bb2e-818b-4d0b-bcb3-d2a71671c27c","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a26b21eb-c441-472d-bce9-7351ce74d72d","keyword":"C/SiC复合材料","originalKeyword":"C/SiC复合材料"},{"id":"82085e57-0302-4201-8059-23275153422a","keyword":"耐烧蚀","originalKeyword":"耐烧蚀"},{"id":"65b92beb-d788-4651-a90d-fdb340d16480","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"8c926772-c214-41b8-980d-6fd25def2bf6","keyword":"ZrC","originalKeyword":"ZrC"}],"language":"zh","publisherId":"xyjsclygc201511036","title":"等离子喷涂ZrC涂层耐烧蚀性能与机理研究","volume":"44","year":"2015"},{"abstractinfo":"采用电弧驻点烧蚀技术,在不同焓值、驻点压力和烧蚀时间条件下对混合基体C/C复合材料的烧蚀性能进行了研究,结果表明:电弧驻点烧蚀条件下,混合基体C/C复合材料的烧蚀以机械剥蚀为主;焓值增加、驻点压力提高、烧蚀时间延长,烧蚀率增加.C/C复合材料的烧蚀性能对驻点压力十分敏感,当压力提高一倍时,材料烧蚀率将成倍增长;质量烧蚀率与驻点压力和气流焓值的关系为:mt=0.0034·H1.0663S·P1.8270S.","authors":[{"authorName":"尹健","id":"3275c238-52e4-469b-adf1-e9768579050a","originalAuthorName":"尹健"},{"authorName":"张红波","id":"4cda6960-bf21-4a35-9f56-273d93840cce","originalAuthorName":"张红波"},{"authorName":"熊翔","id":"a57cfa40-cac1-4b9e-b511-b57f575fc45e","originalAuthorName":"熊翔"},{"authorName":"黄伯云","id":"41653575-cd19-41c5-851d-181618ea421e","originalAuthorName":"黄伯云"}],"doi":"10.3969/j.issn.1673-2812.2007.01.007","fpage":"26","id":"c537c414-28fe-4f2d-80d1-bfe00119c274","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"d9a95440-36ca-487c-9832-264522ac0ff1","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"d293f4b8-1813-4e5b-a755-b11e520ce597","keyword":"气体总焓","originalKeyword":"气体总焓"},{"id":"b2b9e436-7658-45f4-a9df-5c39493e99e8","keyword":"驻点压力","originalKeyword":"驻点压力"},{"id":"3fbbaa82-98b5-4fbb-a510-9d3ee61c98ab","keyword":"烧蚀","originalKeyword":"烧蚀"}],"language":"zh","publisherId":"clkxygc200701007","title":"烧蚀条件对混合基体C/C复合材料烧蚀性能的影响","volume":"25","year":"2007"},{"abstractinfo":"采用真空熔渗技术制备新型C/C-Cu复合材料.采用氧-乙炔焰测试不同时间下C/C-Cu复合材料的抗烧蚀性能,利用XRD、SEM分析材料烧蚀后的物相组成及组织形貌,对C/C-Cu复合材料的烧蚀机理进行研究.结果表明:烧蚀时间对材料的烧蚀率有显著影响,随着时间的延长,材料的质量烧蚀率和线烧蚀率均呈上升趋势;烧蚀后复合材料表面生成氧化物相TiO2和Cu2O,原来的TiC相被TiO2相替代;C/C-Cu复合材料的烧蚀性能优于C/C复合材料的烧蚀性能;C/C-Cu复合材料的氧-乙炔焰烧蚀机制为热氧化烧蚀、热物理烧蚀(升华)和机械冲刷的综合作用.","authors":[{"authorName":"冉丽萍","id":"1781cfe7-05f3-44c8-a2d5-86ae3a0e942d","originalAuthorName":"冉丽萍"},{"authorName":"李文军","id":"4832dc17-3740-40a4-8395-9c8ecb850d0b","originalAuthorName":"李文军"},{"authorName":"杨琳","id":"aeb2302b-9954-4d7c-8242-c3885c028eb9","originalAuthorName":"杨琳"},{"authorName":"易茂中","id":"054e2ac7-abf5-4a08-b69e-9173bc9da44a","originalAuthorName":"易茂中"}],"doi":"","fpage":"510","id":"1a8aab9a-de76-4dce-8228-4119cf8f71f2","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"b18a54a3-41da-402c-a20e-e1ce32752d2a","keyword":"C/C-Cu复合材料","originalKeyword":"C/C-Cu复合材料"},{"id":"9b8f3771-847d-4481-b91f-7715231c0f72","keyword":"烧蚀","originalKeyword":"烧蚀"},{"id":"31532598-90e9-4113-920e-a4027ae5bffc","keyword":"烧蚀机理","originalKeyword":"烧蚀机理"}],"language":"zh","publisherId":"zgysjsxb201003020","title":"C/C-Cu复合材料的烧蚀性能及烧蚀机理","volume":"20","year":"2010"},{"abstractinfo":"采用等离子火炬作为高温热源,研究了细编穿刺碳/碳复合材料高温烧蚀性能.研究结果表明:随着烧蚀区域从火焰中心到边缘的变化,材料的烧蚀特性从中心区域的以热力学烧蚀为主向靠近边缘区域的以热化学烧蚀为主过渡;碳基体和碳纤维的抗热力学烧蚀性能相当,而抗热化学烧蚀和抗氧化性,碳纤维则明显优于碳基体.","authors":[{"authorName":"张巍","id":"af87a430-a2e1-4767-af2b-4efac5658eb4","originalAuthorName":"张巍"},{"authorName":"张博明","id":"123c5e0d-0bec-4c7e-9e54-c9432a18ecc8","originalAuthorName":"张博明"},{"authorName":"孟松鹤","id":"c62bcda9-41af-4bd9-b134-b9b5a3d6381b","originalAuthorName":"孟松鹤"},{"authorName":"韩杰才","id":"8b7c3cdd-0516-4aab-9727-473cfa59caf7","originalAuthorName":"韩杰才"}],"doi":"10.3969/j.issn.1001-4381.2003.05.006","fpage":"23","id":"e852c2cc-0f8e-439c-8e9a-96d14fb52fb8","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c6f08872-78be-49fc-ac3e-203a4aa6c5b3","keyword":"碳/碳复合材料","originalKeyword":"碳/碳复合材料"},{"id":"39a1a2d2-724c-4ae0-a24d-1599575c2a5e","keyword":"烧蚀","originalKeyword":"烧蚀"},{"id":"520932d7-b989-44c9-a0cc-2d97a6e15250","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"clgc200305006","title":"细编穿刺碳/碳复合材料等离子火炬高温烧蚀性能研究","volume":"","year":"2003"},{"abstractinfo":"烧蚀角度对C/C复合材料的耐烧蚀性能有显著的影响,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的三维四向C/C复合材料进行烧蚀/侵蚀实验,实验的典型角度分别为90°,60°,45°,侵蚀时的粒子浓度为1.37%.测算试样的宏观烧蚀率,并采用扫描电镜(SEM)观察了试样烧蚀后的微观形貌.分析了角度对C/C复合材料烧蚀行为的影响规律,并探讨其烧蚀机理.结果表明:不加粒子进行烧蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.146,0.123,0.100g/s,随烧蚀角度的减小,质量烧蚀率加速降低;加粒子进行侵蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.452,0.455,0.432g/s,线烧蚀率分别为1.863,1.323,0.843mm/s,随烧蚀角度的减小,质量烧蚀率基本不变,线烧蚀率逐渐降低.烧蚀角度越小,射流的冲刷作用越强,伴随热化学烧蚀的作用,导致烧蚀/侵蚀实验条件下,径向纤维的烧蚀梯度均增加;烧蚀实验条件下,轴向纤维束外沿的受冲刷区域变大.","authors":[{"authorName":"查柏林","id":"9c0ad43d-5729-4a1a-b45c-fef76bffd26e","originalAuthorName":"查柏林"},{"authorName":"高双林","id":"8440dd65-9bce-491a-be8e-2a90e33c0ddf","originalAuthorName":"高双林"},{"authorName":"林浩","id":"bf3a09b4-caae-4e22-9b85-8f0d6d8111c7","originalAuthorName":"林浩"},{"authorName":"罗雷","id":"d29dd261-4ab5-403e-9c14-ca6890c023b4","originalAuthorName":"罗雷"},{"authorName":"张博文","id":"b56fea46-ae6a-400b-968a-90c9174c4af5","originalAuthorName":"张博文"},{"authorName":"朱杰堂","id":"9dac31a8-a332-4591-aaf2-4659cb7ac3fa","originalAuthorName":"朱杰堂"},{"authorName":"孙振生","id":"69304559-6062-4800-ba20-9d8653af92b6","originalAuthorName":"孙振生"}],"doi":"10.11868/j.issn.1001-4381.2015.000527","fpage":"54","id":"fb249ea6-4a57-458a-bca9-02bb50b709dc","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c6570d4a-13a2-485a-853f-da9a07c09110","keyword":"烧蚀角度","originalKeyword":"烧蚀角度"},{"id":"42af7f9e-b47a-48da-b4d1-5af753804f57","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"85b4451c-9597-4f2a-8e77-0454b378f10c","keyword":"质量烧蚀率","originalKeyword":"质量烧蚀率"},{"id":"305c6cd1-46cd-4c84-8a48-3cdd34d586e7","keyword":"线烧蚀率","originalKeyword":"线烧蚀率"},{"id":"db998289-9a02-4365-a3bd-26b61271ebf3","keyword":"烧蚀性能","originalKeyword":"烧蚀性能"}],"language":"zh","publisherId":"clgc201702009","title":"烧蚀角度对C/C复合材料烧蚀行为的影响","volume":"45","year":"2017"}],"totalpage":696,"totalrecord":6958}