{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在不同衬底温度条件下采用RF磁控溅射法在石英玻璃上沉积Al-H共掺杂ZnO薄膜.对所有样品进行晶体结构、表面形貌、电学、光学以及室温光致发光性能分析.结果表明:随着衬底温度的升高,ZnO薄膜的结晶度增加,晶粒增大,薄膜致密度增加;薄膜表面起伏变化减小;同时,电阻率最低达到7.58×10-4Ω·cm,透过率保持在75%左右.所有ZnO薄膜样品都以本征发光为主,Al-H共掺杂在一定程度降低ZnO薄膜缺陷发光的强度;随着衬底温度的升高,ZnO薄膜的本征发光强度明显增大;同时在能量为3.45 eV附近观察到了一个紫外发光峰.","authors":[{"authorName":"陈义川","id":"d62b122f-ecf2-4bf3-808d-706075c0998d","originalAuthorName":"陈义川"},{"authorName":"胡跃辉","id":"3165f01b-89dd-4196-b41c-fa8311c3f7e3","originalAuthorName":"胡跃辉"},{"authorName":"张效华","id":"a217342f-5515-4efa-bc89-d94a21082177","originalAuthorName":"张效华"},{"authorName":"马德福","id":"808c8793-9f15-48f2-88ef-e20968538b9c","originalAuthorName":"马德福"},{"authorName":"","id":"2e125462-6853-4cfa-9f79-17427af5dc8d","originalAuthorName":"刘细妹"},{"authorName":"徐斌","id":"7b41c255-a7df-46d2-a904-bfde7a325cfa","originalAuthorName":"徐斌"},{"authorName":"张志明","id":"556bc6b4-f49f-4423-a408-22e99e10728b","originalAuthorName":"张志明"}],"doi":"","fpage":"2583","id":"a149d938-ece3-4300-8e8e-1fdbe97aba15","issue":"12","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ad4c72a8-f666-4035-9f11-0e7c2c8e3a14","keyword":"Al-H共掺杂ZnO","originalKeyword":"Al-H共掺杂ZnO"},{"id":"ead611a5-43d5-4e76-9d19-42ce79c6f663","keyword":"光致发光","originalKeyword":"光致发光"},{"id":"b4f26a79-8459-4ff1-a45c-fc680fbb1d9a","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"rgjtxb98201312020","title":"Al-H共掺杂ZnO薄膜的形貌及光致发光性能研究","volume":"42","year":"2013"},{"abstractinfo":"采用溶胶-凝胶旋涂法在石英衬底上制备了不同Mg,Sn掺杂比例的ZnO薄膜,研究了不同Mg,Sn比例对ZnO薄膜微观结构、表面形貌和光电性能的影响及其内在机制.结果表明:Mg,Sn掺杂后薄膜仍保持六方纤锌矿结构并沿(002)方向择优生长,掺入2%的Mg后,晶粒有所长大,保持2% Mg不变,随着Sn的掺入,薄膜晶粒减小,但薄膜的致密度、表面平整度以及薄膜晶粒均匀性却有明显的改善;适量Mg,Sn掺杂,一方面,因Mg,Zn离子的金属性差异和Sn4+替位Zn2+晶格位置提供两个自由电子使薄膜载流子浓度增加产生Burstein-Moss效应,另一方面,因晶粒尺寸变小产生量子限域效应,薄膜禁带宽度增大,同时可见光透过率也有着明显提高;Mg,Sn共掺杂使薄膜结晶变好,载流子迁移率增大,同时载流子浓度上升,ZnO薄膜电阻率呈现较大幅度的下降.","authors":[{"authorName":"马德福","id":"f2700f0d-1e82-4047-b0bf-5fb96d784eae","originalAuthorName":"马德福"},{"authorName":"胡跃辉","id":"8cb2715b-1ada-48ae-a83d-78a8d1829f73","originalAuthorName":"胡跃辉"},{"authorName":"陈义川","id":"1e5579fa-8a20-415b-b5f6-e6e5f5f9edcf","originalAuthorName":"陈义川"},{"authorName":"","id":"c63e25ee-6e27-4e72-b0cf-4c24fdc28e97","originalAuthorName":"刘细妹"},{"authorName":"张志明","id":"fe608596-3104-4a33-845e-de00198dac10","originalAuthorName":"张志明"},{"authorName":"徐斌","id":"73929c98-9e08-4679-afd0-5a47712487de","originalAuthorName":"徐斌"}],"doi":"","fpage":"862","id":"35345b53-25ba-4cd7-a4ac-001976a5e46b","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"25d12435-a577-406b-bc97-598cd030ff9b","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"019e69a0-49bf-4905-afc4-9d711df28cac","keyword":"Mg,Sn共掺","originalKeyword":"Mg,Sn共掺"},{"id":"dd91984d-5de4-4445-92c1-b8dca762ba65","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"c741cb0a-0fa4-43e8-85a6-cbba41c913f1","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"rgjtxb98201404026","title":"Mg,Sn共掺对ZnO薄膜光电性能的影响","volume":"43","year":"2014"},{"abstractinfo":"采用溶胶凝胶(Sol-Gel)旋涂法在抛光石英衬底上制备不同厚度Mg-Sn共掺的ZnO薄膜.用XRD、SEM、UV-Vis、PL、FT-IR光谱仪和四探针等对薄膜的微观结构、表面形貌、室温光致发光及光电特性进行表征.薄膜结构分析显示样品均沿c轴高度择优取向,呈六角纤锌矿晶体结构,随着膜厚的增加,薄膜结晶度明显提高,薄膜晶粒尺寸逐渐增大.由SEM照片观察到,厚度的增加明显促进了薄膜表面颗粒生长的均匀性与致密性.由光致发光谱表明:厚度增加,薄膜的本征发光峰增强且均出现较强的紫外发光峰和蓝光发光峰.FT-IR结果显示780 nm厚的薄膜在高波数区域红外吸收明显比320 nm和560 nm弱.薄膜电阻率随厚度增加由1.4×10-2 Ω·cm减小至2.6×10-3Ω·cm,且薄膜透过率均保持在90%左右.","authors":[{"authorName":"","id":"69bd80dd-ec7b-442d-9a0e-7abf86c594cb","originalAuthorName":"刘细妹"},{"authorName":"胡跃辉","id":"fd11e024-d879-4907-be64-0148b5cf1dc1","originalAuthorName":"胡跃辉"},{"authorName":"陈义川","id":"39ad56b1-0574-4706-9f73-d969cf3a73a5","originalAuthorName":"陈义川"},{"authorName":"胡克艳","id":"9340314a-d378-4820-96af-d6d51018ef9e","originalAuthorName":"胡克艳"},{"authorName":"徐斌","id":"fb7ea820-d950-41d6-a942-4a05c327002f","originalAuthorName":"徐斌"},{"authorName":"张志明","id":"92d9db71-7c26-417e-b008-f105ad7a9ef0","originalAuthorName":"张志明"}],"doi":"","fpage":"95","id":"73d36652-643c-40aa-a365-1d2746be715e","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0520b09f-1f37-445a-a217-9efb69852d93","keyword":"溶胶凝胶法","originalKeyword":"溶胶凝胶法"},{"id":"2628b0e8-49aa-459d-8c8e-0e82ec776150","keyword":"Mg-Sn共掺ZnO","originalKeyword":"Mg-Sn共掺ZnO"},{"id":"a0c84b15-695d-42c3-83c3-7c7ee3c74ce4","keyword":"厚度","originalKeyword":"厚度"},{"id":"e35fe5b6-d579-4f6f-9296-55f12b91c93a","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"1f2204c4-f508-413b-b93f-b6bec4ca1e75","keyword":"透过率","originalKeyword":"透过率"}],"language":"zh","publisherId":"rgjtxb98201501017","title":"厚度对Mg-Sn共掺ZnO薄膜结构和光电性能的影响","volume":"44","year":"2015"},{"abstractinfo":"文中,关于贝氏体形成机制,包括形核过程的文献很少被引述。作者(等)的主要论点为贝氏体铁素体以无扩散、非切变机制在奥氏体内贫碳区形核,并未引述形成贫碳区的必要条件。本文作者强调,在钢及铜合金中,不可能由Spinodal分解和位错偏聚形成贫溶质区。等的理念未得到先进理论观点和精细实验结果的支持。在文中,据此对临界核心大小和形核能的计算并无显著意义,期望青年学者对贝氏体相变机制作进一步研究。","authors":[{"authorName":"徐祖耀","id":"f5bc6b26-ec4d-45e7-a1da-067daa9d3115","originalAuthorName":"徐祖耀"}],"doi":"","fpage":"158","id":"66a9e9e8-09a0-408c-8c33-bc00aeff35c0","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5224cfe0-dd6d-4ccc-aac3-2bed80f388a5","keyword":"贝氏体形核","originalKeyword":"贝氏体形核"},{"id":"cae16aae-8a2b-43f5-9886-1ca5759c5972","keyword":"扩散机制","originalKeyword":"扩散机制"},{"id":"36bc9f8f-ee13-4c27-8020-c2c5b0dfca8f","keyword":"切变机制","originalKeyword":"切变机制"},{"id":"a3bb808d-ba7a-4c9a-90ff-d5e59a6a0f1a","keyword":"贫碳区","originalKeyword":"贫碳区"}],"language":"zh","publisherId":"jsrclxb201202033","title":"评宗昌等《贝氏体铁素体的形核》一文","volume":"33","year":"2012"},{"abstractinfo":"利用质子激发X射线荧光分析(PIXE)测试分析汝官瓷、张公巷窑青瓷和家门窑青瓷样品的主要化学组成,用多元统计判别分析方法对数据进行分析,以确定它们的分类和起源关系.结果表明:汝官瓷、张公巷窑青瓷和家门窑青瓷釉基本能很好的区分;但是胎区分得不是很理想,张公巷窑青瓷的胎可以和汝官瓷、家门窑青瓷胎很好的区分,汝官瓷胎和家门窑青瓷胎有个别样品不能分开.","authors":[{"authorName":"蔡敏敏","id":"bf1f4660-208a-4999-ac81-266bf48c5bcb","originalAuthorName":"蔡敏敏"},{"authorName":"李国霞","id":"f8d3a4dc-7472-4dd6-9382-9f4430feef58","originalAuthorName":"李国霞"},{"authorName":"赵维娟","id":"9572b140-eca3-4192-af6e-ab9fdb21502b","originalAuthorName":"赵维娟"},{"authorName":"李融武","id":"e2d1fb82-016c-4ae3-9ee6-0cabbe60a2a0","originalAuthorName":"李融武"},{"authorName":"赵文军","id":"ea875a05-c1f7-4a8f-b405-2005de7db87c","originalAuthorName":"赵文军"},{"authorName":"承焕生","id":"9ff5fa85-a1fb-4cd2-bdc3-3bd240fd6894","originalAuthorName":"承焕生"},{"authorName":"郭敏","id":"d4074d21-787e-429b-8123-a13fcf5ce433","originalAuthorName":"郭敏"}],"doi":"","fpage":"1363","id":"f1ea8842-b3fe-42a2-9557-aa4c186cac5a","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d281b6ff-a4b5-41d8-ad69-47236e801de5","keyword":"汝官瓷","originalKeyword":"汝官瓷"},{"id":"adf8b648-9625-4b38-96ff-ec6174d0c5d4","keyword":"张公巷窑青瓷","originalKeyword":"张公巷窑青瓷"},{"id":"3a61e23c-a3f8-43e6-84fc-1b7cd4edef5b","keyword":"家门窑青瓷","originalKeyword":"刘家门窑青瓷"},{"id":"494e2983-99cd-4c53-a919-4bfad5b7c54a","keyword":"判别分析","originalKeyword":"判别分析"}],"language":"zh","publisherId":"gsytb201206005","title":"汝官瓷、张公巷窑青瓷和家门窑青瓷的判别分析研究","volume":"31","year":"2012"},{"abstractinfo":"本文采用质子激发X射线荧光分析(PIXE)技术测试了34个汝官瓷样品、30个蓝色系列钧官瓷样品(不含红釉系列)和17个家门窑青瓷样品的主量化学组成含量,根据这些样品的主量化学组成含量数据,应用多元统计分析方法进行分析.结果表明:汝官瓷、钧官瓷和家门窑青瓷的釉样品能够较好的区分开;但是3种瓷胎并不能很好的分开.","authors":[{"authorName":"肖朋飞","id":"6c5bc42f-0f99-48b4-b412-749a9ae0e046","originalAuthorName":"肖朋飞"},{"authorName":"赵红梅","id":"27edfee9-f617-4a36-af10-1a11a2aec85c","originalAuthorName":"赵红梅"},{"authorName":"李融武","id":"019184bd-8770-4aad-9618-4e2e6642f646","originalAuthorName":"李融武"},{"authorName":"赵文军","id":"6c10bb80-2026-4274-9965-bf564b102cc6","originalAuthorName":"赵文军"},{"authorName":"李国霞","id":"6f63b95a-67cb-4f68-b4b5-7c0b6f8f38e7","originalAuthorName":"李国霞"},{"authorName":"赵维娟","id":"ee11e4bc-a40c-4de3-90c4-e81dd16a55e3","originalAuthorName":"赵维娟"},{"authorName":"承焕生","id":"528f9874-c9c9-4258-bc3c-5a0d9ea8b362","originalAuthorName":"承焕生"}],"doi":"","fpage":"312","id":"3b352bdd-7627-42ad-a3b3-45e88dc561eb","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"080b7cee-826f-4a82-af62-9feed6531e66","keyword":"汝官瓷","originalKeyword":"汝官瓷"},{"id":"684a6128-65b6-45ce-be61-e74720b4c844","keyword":"钧官瓷","originalKeyword":"钧官瓷"},{"id":"14ccb09f-07d1-4f4b-bb41-c0ad3eea1fa0","keyword":"家门窑青瓷","originalKeyword":"刘家门窑青瓷"},{"id":"4b254520-d0a1-406e-a9ef-92267cd23fb0","keyword":"PIXE","originalKeyword":"PIXE"},{"id":"12b26595-24a4-4ea9-b303-ae046a74c72d","keyword":"因子分析","originalKeyword":"因子分析"}],"language":"zh","publisherId":"gsytb201102013","title":"汝官瓷、钧官瓷和家门窑青瓷的多元统计分析","volume":"30","year":"2011"},{"abstractinfo":"阐述了钢铁材料的性能可以通过细晶强化得到改善,对晶材料的制备工艺的进展特别是对强烈塑性变形制备块状超晶材料的工艺方法加以重点阐述.","authors":[{"authorName":"杨占林","id":"1ce2d606-07ce-45d5-bc83-3aabbbfefcc5","originalAuthorName":"杨占林"},{"authorName":"赵福才","id":"073f43a4-bb5f-4c87-b0d1-7588bb25f0bc","originalAuthorName":"赵福才"},{"authorName":"卢曦","id":"77ee277c-0e14-4961-a7d5-6af0ea402b6e","originalAuthorName":"卢曦"}],"doi":"","fpage":"60","id":"cde3e9f1-aac0-4040-8398-3e810bb57ef9","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"e1fe9b11-af04-49e7-a06a-e5382bda2c77","keyword":"块体超晶材料","originalKeyword":"块体超细晶材料"},{"id":"2db8f070-39da-4aa7-ad98-89c5d5c436cc","keyword":"强烈塑性变形","originalKeyword":"强烈塑性变形"},{"id":"63725110-9d26-4cb2-94cb-e98e3f792a22","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"gtyj200903017","title":"超晶钢铁材料晶强化的进展","volume":"37","year":"2009"},{"abstractinfo":"介绍了晶高强钢筋研发方向、晶钢筋的强化原理、关键生产参数的选择,晶钢筋的几点特性,晶钢筋的应用前景,以及与微合金钢筋的协调发展关系.","authors":[{"authorName":"翁宇庆","id":"20bd7cf0-d28f-4bfb-a1f6-dc1d96acbe9a","originalAuthorName":"翁宇庆"}],"doi":"10.3969/j.issn.1001-7208.2009.05.001","fpage":"1","id":"cd0f4bc2-b305-4233-b683-64139b940a1a","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"3a33f84e-6d29-410a-b233-2dc56c73fa7d","keyword":"晶钢筋","originalKeyword":"细晶钢筋"},{"id":"93839434-e73a-4fb4-ba33-7b041aa563e3","keyword":"强化原理","originalKeyword":"强化原理"},{"id":"40630082-e89b-4940-a8b9-828740b28276","keyword":"生产参数","originalKeyword":"生产参数"},{"id":"55a6aa20-b641-45ef-ba1e-18dc001d48e8","keyword":"应用前景","originalKeyword":"应用前景"}],"language":"zh","publisherId":"shjs200905001","title":"晶建筑钢筋的技术原理","volume":"31","year":"2009"},{"abstractinfo":"碳纤维增强树脂基复合材料(CFRP)在观上呈现纤维、树脂及界面组成的混合态,其切削加工过程的实质为刀具作用下材料观层面的破坏至切屑宏观形成的演化过程.为了揭示CFRP切削加工过程中材料的观破坏,建立了CFRP切削的观有限元模型.该模型在几何上包含了纤维、基体及界面等组成相,而不是使用传统的等效均质建模方法.各组成相不仅考虑了各自不同的材料本构,而且为了能够模拟材料破坏,还将各组成相材料的失效及演化准则考虑其中.该模型可从观层面更真实地模拟不同纤维角度CFRP单向板切削过程中纤维/基体断裂、界面开裂及演化的过程.仿真结果表明:不同纤维角度下CFRP观破坏不同,切削0°CFRP时以界面开裂和纤维弯断为主;切削45°/90°CFRP时主要是刀具侵入工件,纤维基体被压断;切削135°CFRP时则以纤维弯曲断裂为主,断裂面往往在加工面以下.通过实验显微在线观测手段验证了模拟结果的正确性.","authors":[{"authorName":"高汉卿","id":"d9f44582-8474-41c2-8f34-c06065bd9fdb","originalAuthorName":"高汉卿"},{"authorName":"贾振元","id":"3f8c3174-c56e-45dc-81f7-43b1ec271fb7","originalAuthorName":"贾振元"},{"authorName":"王福吉","id":"a177d331-42aa-4ab8-9728-306440d66d8b","originalAuthorName":"王福吉"},{"authorName":"宿友亮","id":"972b07d2-fd2d-4fb7-9135-5ecb4ddbc141","originalAuthorName":"宿友亮"},{"authorName":"朱浩杰","id":"2ff0c5d8-a934-412c-9e52-58a073e5834b","originalAuthorName":"朱浩杰"}],"doi":"10.13801/j.cnki.fhclxb.20150907.003","fpage":"758","id":"3984ef4b-366c-4af8-a8e3-cdd3276f8ee9","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"8da16e61-3d08-4895-8b70-b1d1ba1cf650","keyword":"CFRP","originalKeyword":"CFRP"},{"id":"2638a5c1-cc8b-4cde-9020-be6039d42891","keyword":"有限元仿真","originalKeyword":"有限元仿真"},{"id":"e30a4d22-c2b0-4192-b7c4-df6746d93862","keyword":"观模型","originalKeyword":"细观模型"},{"id":"115dad40-a561-48c8-910d-89d440474da9","keyword":"观破坏","originalKeyword":"细观破坏"},{"id":"43c9c9ad-5ed1-4543-94c7-69e9e7bd1e87","keyword":"切屑","originalKeyword":"切屑"}],"language":"zh","publisherId":"fhclxb201604008","title":"基于观仿真建模的CFRP观破坏","volume":"33","year":"2016"},{"abstractinfo":"介绍了超晶粒钢的特点,针对这些特点,讨论了超晶粒钢的焊接性,其中包括HAZ性能、焊缝性能、HAZ和焊缝的裂纹倾向等.","authors":[{"authorName":"屈朝霞","id":"7497c965-e6a5-4e8e-acfd-e4929c68f452","originalAuthorName":"屈朝霞"},{"authorName":"田志凌","id":"9b52279c-431b-4de6-a9e9-6ee5519f45e4","originalAuthorName":"田志凌"},{"authorName":"何长红","id":"22fd13a2-fc83-46b3-bb4c-2c8932296288","originalAuthorName":"何长红"},{"authorName":"张晓牧","id":"770e8561-b6ba-49ac-b3aa-35b2c18a7061","originalAuthorName":"张晓牧"},{"authorName":"杨柏","id":"058d8a84-4584-44c7-b35b-5da2e4968f91","originalAuthorName":"杨柏"},{"authorName":"曹能","id":"0e3071f4-1a52-474c-abe8-a56421630a6e","originalAuthorName":"曹能"}],"doi":"","fpage":"70","id":"111fc54c-707b-406a-838b-34b987ec5238","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c4a3a210-f187-45bf-a922-9eff00c12d88","keyword":"超晶粒钢","originalKeyword":"超细晶粒钢"},{"id":"d5269863-7ed3-4242-beea-0480b2e78c70","keyword":"焊接性","originalKeyword":"焊接性"},{"id":"39e2c9f4-fd17-496d-9bf6-041022b8b209","keyword":"HAZ","originalKeyword":"HAZ"},{"id":"8cb5592d-61e0-46ed-a9c1-0220a82805ff","keyword":"晶粒长大","originalKeyword":"晶粒长大"}],"language":"zh","publisherId":"gt200002018","title":"超晶粒钢及其焊接性","volume":"35","year":"2000"}],"totalpage":440,"totalrecord":4394}