{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以硝酸氧化剂,抗坏血酸为还原剂和新型燃烧剂,燃烧法快速合成CuO、CuO/Cu2O、Cu2O.对所制样品进行XRD、SEM、UV、BET表征.当抗坏血酸用量不同时,可制备的不同氧化物.CuO、CuO/Cu2O、Cu2O的形貌和粒径不同,光催化效果也不相同.燃烧法制备的Cu2O具有可见光催化效果,90 min亚甲基蓝完全褪色;燃烧法制备的CuO/Cu2O复合氧化物具有紫外光催化效果,240 min亚甲基蓝降解87%.","authors":[{"authorName":"李秀萍","id":"9536b888-2579-4236-b39d-dc92d16ea409","originalAuthorName":"李秀萍"},{"authorName":"赵荣祥","id":"6bdb5d45-aa3a-48f1-ae5e-c4109ad2ac06","originalAuthorName":"赵荣祥"},{"authorName":"林可洪","id":"47b90a52-e61d-4cac-a06e-bf9fb3843026","originalAuthorName":"林可洪"},{"authorName":"石微微","id":"5ea82560-3969-4d4f-8106-9603f998abb5","originalAuthorName":"石微微"},{"authorName":"赵崇峰","id":"a2756a33-d570-4ff8-b43c-6c9d0835cb99","originalAuthorName":"赵崇峰"}],"doi":"","fpage":"1802","id":"3066dad2-5e41-412b-bcae-98c42a5032e9","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"63a1a2b3-b789-463b-98bb-08d7245ceefe","keyword":"燃烧法","originalKeyword":"燃烧法"},{"id":"f8d732c5-cfc3-4110-89bf-8779b98af217","keyword":"抗坏血酸","originalKeyword":"抗坏血酸"},{"id":"c2c0089e-dd7a-4975-8b05-171f998fa532","keyword":"光催化性能","originalKeyword":"光催化性能"},{"id":"95b32084-e340-4292-913f-e766bf93692e","keyword":"氧化物","originalKeyword":"铜氧化物"}],"language":"zh","publisherId":"rgjtxb98201407037","title":"燃烧剂量对氧化物形貌和光催化性能的影响","volume":"43","year":"2014"},{"abstractinfo":"在磷酸盐缓冲溶液中于玻碳电极表面聚合邻苯二胺,再负载纳米氧化物,成功制备了邻苯二胺负载纳米氧化物修饰玻碳电极(CuO/P-oPD/GC).探讨了聚合和负载机理,用电化学交流阻抗谱表征了修饰电极界面的阻抗变化,用扫描电镜表征了聚邻苯二胺膜和负载氧化物后的表面形态,发现CuO/P-oPD/GC电极对H2O2有显著的电催化氧化、还原双重活性,并呈现\"协同增敏\"效应.考察了制备条件对CuO/P-oPD/GC电极电催化活性的影响,最佳CoO负载扫描次数为20,Cu2+的质量浓度为1.67mmol/L.对H2O2电催化氧化的线性方程为△ip8(μA)=0.08+5.64c(mmol/L)(R=0.9982),线性范围为2.4×10-2~48mmol/L,检测限为2.8×10-3mmol/L(3S/k);电催化还原的线性方程为△ipc(μA)=0.11-2.45c(mmol/L)(R=0.9820),线性范围为2.4×10-3~38.4mmol/L,检测限为2.0×10-4mmol/L(3S/k).该复合材料修饰电极的灵敏度高、稳定性好,用于实际水样中H2O2测定结果满意.","authors":[{"authorName":"刘有芹","id":"3ea369cb-2b98-4044-8bd5-9443880e93c8","originalAuthorName":"刘有芹"},{"authorName":"乐文志","id":"10d0423a-25f9-4f3f-9fe0-85c00931a271","originalAuthorName":"乐文志"},{"authorName":"薛峰峰","id":"c9f70ecd-4eb7-4ca8-90d0-229139b09b64","originalAuthorName":"薛峰峰"},{"authorName":"颜芸","id":"a207616e-2705-4a21-bcdb-29bfdb12c27c","originalAuthorName":"颜芸"},{"authorName":"徐莉","id":"efab1944-58a2-4d3e-8604-a97c3430d2bf","originalAuthorName":"徐莉"}],"doi":"","fpage":"103","id":"62a23e29-d3d7-45bd-a543-e2acb9e3bec6","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bb574349-9229-40a2-b648-5938b1bc35c6","keyword":"邻苯二胺","originalKeyword":"邻苯二胺"},{"id":"10c25933-7431-4256-b1d5-d422742a5181","keyword":"氧化物","originalKeyword":"铜氧化物"},{"id":"abe8aad8-b773-4046-af65-06e1a58a0a86","keyword":"玻碳电极","originalKeyword":"玻碳电极"},{"id":"9e974c73-a301-4048-8b52-6167205715c3","keyword":"过氧化氢","originalKeyword":"过氧化氢"},{"id":"27db642e-024e-4851-bcc9-8b1b449a61e6","keyword":"电催化","originalKeyword":"电催化"}],"language":"zh","publisherId":"cldb201008029","title":"聚邻苯二胺负载纳米氧化物修饰玻碳电极的制备及表征","volume":"24","year":"2010"},{"abstractinfo":"利用Rietveld方法用X射线衍射数据计算了掺Zn的La1.85Sr0.15Cu1-yZnyO4的原子结构参数。随着Zn含量的增加,晶格常数a,b增大,c下降;在Zn含量约0.15处存在一个从四方到正交的结构相变,该相变为二级相变。讨论了Zn掺杂所引起LSCO晶体结构中CuO6八面体对称性的改变,从精修得到的衍射峰形参数计算了各掺杂样品的晶格微应变。","authors":[{"authorName":"聂姝","id":"fabdfaea-5fb9-4243-b81b-c21c208809f0","originalAuthorName":"聂姝"},{"authorName":"吴小山","id":"809a73e8-7d2b-4138-8f28-d275ff3c3ed0","originalAuthorName":"吴小山"},{"authorName":"蒋树声","id":"c4792e63-5678-4b46-b1c1-58cd620a9f5a","originalAuthorName":"蒋树声"}],"doi":"","fpage":"213","id":"1357403a-f505-4274-a396-e23f7fadd92f","issue":"3","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"98cfee6b-0216-4ab7-ae89-4421eaa1c9c2","keyword":"稀土","originalKeyword":"稀土"},{"id":"7b4b8e52-de73-4dc2-9bf8-14a78dc5de5c","keyword":"氧化物","originalKeyword":"铜氧化物"},{"id":"61fd36a4-0151-4b5e-a7f8-45a96be50f86","keyword":"结构","originalKeyword":"结构"},{"id":"5b00a9b3-6413-45c2-8e0a-c61c4d2f59cf","keyword":"微应变","originalKeyword":"微应变"}],"language":"zh","publisherId":"zgxtxb200103005","title":"锌掺杂LaSrCuO氧化物的微结构效应","volume":"19","year":"2001"},{"abstractinfo":"以生物质废弃物———稻草和核桃壳为原料,采用化学活化法制出活性炭,将制得的活性炭与盐溶液等体积浸渍,制备出复合基脱硫剂,并对其进行了 H 2 S 吸附性能研究。研究表明:随着负载量和焙烧温度的提高,复合脱硫剂活性均呈现先上升后下降的趋势,其中以核桃壳活性炭制备出的复合脱硫剂活性优于稻草活性炭,当的负载量为20%、焙烧温度400℃、焙烧时间1 h 时,其 H 2 S 的吸附时间可达160 min;SEM、FT-IR 和 XRD 结构分析显示,核桃壳复合脱硫剂的颗粒明显小于稻草炭脱硫剂,且在核桃壳炭表面主要以氧化物的形式存在,所以核桃壳活性炭更适宜作为脱硫剂的载体使用。","authors":[{"authorName":"王奇飞","id":"c1ef7b59-8f51-4fdc-ba6e-dc4bb52ae4f7","originalAuthorName":"王奇飞"},{"authorName":"李芬","id":"fc7e3433-c4ee-48cb-ab7f-8196cb4367bd","originalAuthorName":"李芬"},{"authorName":"李梁","id":"260e507f-3883-4f62-9b1f-de1623a17bfd","originalAuthorName":"李梁"},{"authorName":"杨莹","id":"46ed2581-6583-4894-97de-f8d728c5c459","originalAuthorName":"杨莹"}],"doi":"10.11896/j.issn.1005-023X.2016.04.006","fpage":"21","id":"81a1eb4a-6d31-421a-b375-d67d7bf9021c","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bde32a5a-6c06-4f63-8e84-c5fb5868b918","keyword":"生物质废弃物","originalKeyword":"生物质废弃物"},{"id":"651e6455-3125-4f1d-a030-efde8d517b66","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"6f7a6cb6-2ba4-460d-bd01-491d41a1993a","keyword":"氧化物","originalKeyword":"铜氧化物"},{"id":"3da4313e-853d-4942-bace-3015d34fbaf0","keyword":"硫化氢","originalKeyword":"硫化氢"}],"language":"zh","publisherId":"cldb201604007","title":"基于生物质废弃物制备复合脱硫剂的研究?","volume":"30","year":"2016"},{"abstractinfo":"本文在t-J模型下,应用fermion-spin理论 ,研究了双层掺杂氧化物材料的输运性质.结果表明,双层氧化物材料输运性质与单层定性相同:光电导显示出低能峰和反常中红外带,随着温度升高,中红外带被强烈压制;非常欠掺杂区域的电阻显示出从高温时金属行为到低温时绝缘体行为的转变.这些都与实验结果定性相符.","authors":[{"authorName":"秦吉红","id":"eed819d4-e6eb-4e7c-8e00-dfcb677c7630","originalAuthorName":"秦吉红"},{"authorName":"袁峰","id":"78d885b1-de7c-4d2f-8ba8-c4e7d59a26e9","originalAuthorName":"袁峰"},{"authorName":"冯世平","id":"69e8b2b4-9695-46c6-ac38-c5d212fbe24d","originalAuthorName":"冯世平"}],"doi":"10.3969/j.issn.1000-3258.2003.z2.053","fpage":"567","id":"d25a2b10-b4f3-4f3e-9737-0cccea5c3bce","issue":"z2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"074b23dc-a910-43c3-b196-47a1fa71f439","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb2003z2053","title":"欠掺杂双层氧化物的输运性质","volume":"25","year":"2003"},{"abstractinfo":"以乙酸和乙酸锰为锰前驱体,以NH4HCO3为沉淀剂,相应金属硝酸盐为掺杂剂,采用共沉淀法制备了不同过渡金属氧化物掺杂的氧化物催化剂.采用N2物理吸附、X射线衍射,氢气-程序升温还原和原位红外漫反射光谱等方法对催化剂进行了表征,考察了系列催化剂上CO反应性能.结果表明,掺杂过渡金属氧化物可以调变催化剂对CO的吸附能力,进而影响催化剂性能.","authors":[{"authorName":"蔡丽娜","id":"e4495e15-6451-4016-b297-8a65c4155998","originalAuthorName":"蔡丽娜"},{"authorName":"胡臻皓","id":"4b74cdfe-0009-46a6-8ed1-0d62f345eec5","originalAuthorName":"胡臻皓"},{"authorName":"","id":"196e7937-34bb-4ab4-aea0-ff7bd9d08ab7","originalAuthorName":""},{"authorName":"李文翠","id":"2b8e1a4e-7b9f-432b-9b42-670e6ecda333","originalAuthorName":"李文翠"}],"doi":"10.1016/S1872-2067(12)60699-8","fpage":"159","id":"10fbabac-6b55-4987-84eb-04bac73f1f21","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"3d193a97-cb4f-4318-9d6a-c60c608804a4","keyword":"氧化物","originalKeyword":"铜锰氧化物"},{"id":"811c6abb-03c8-4362-8087-328af9dca88a","keyword":"过渡金属氧化物","originalKeyword":"过渡金属氧化物"},{"id":"574254df-1571-42f0-9a38-154d32bb656a","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"61aeec24-1c96-4871-b6c4-7ea47cb27d48","keyword":"一氧化氧化","originalKeyword":"一氧化碳氧化"},{"id":"c07dd4c3-4b41-4a7a-acb2-82fe58b9967e","keyword":"原位红外漫反射光谱","originalKeyword":"原位红外漫反射光谱"}],"language":"zh","publisherId":"cuihuaxb201402001","title":"过渡金属氧化物掺杂对氧化物催化CO氧化性能的影响","volume":"35","year":"2014"},{"abstractinfo":"采用X射线衍射和卢瑟福背散射技术,研究了Cr离子注入薄膜对氧化物形成及其演变的影响.结果表明,离子注入改变了薄膜的氧化行为和氧化物结构.离子注入阻碍Cu原子的扩散,并抑制Cu2O向CuO转变,使得薄膜表面的氧化物具有层状结构.探讨了注入前后薄膜表面氧化物形成的机理.","authors":[{"authorName":"王二敏","id":"df8c904e-b3b8-43ec-9065-765ce4db6ebb","originalAuthorName":"王二敏"},{"authorName":"王晓震","id":"3049cb92-bc17-4e4b-bffb-9e944cf0be46","originalAuthorName":"王晓震"},{"authorName":"赵新清","id":"5fc35888-be82-4319-bf7c-fab75557f4b7","originalAuthorName":"赵新清"}],"doi":"10.3969/j.issn.1001-4381.2000.08.012","fpage":"39","id":"544f9246-648e-4edc-bfdb-1f4ea10a39b5","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"8f3b5cae-871a-469a-9d91-34b2c5a23f95","keyword":"薄膜","originalKeyword":"铜薄膜"},{"id":"cc2d6bf7-3cf6-467d-afa8-eee81cb6adc9","keyword":"离子注入","originalKeyword":"离子注入"},{"id":"98459c1f-9ec3-4732-93d1-514a62d66fe7","keyword":"氧化","originalKeyword":"氧化"}],"language":"zh","publisherId":"clgc200008012","title":"Cr离子注入薄膜对氧化物形成特征的影响","volume":"","year":"2000"},{"abstractinfo":"对各种高温氧化物超导体如RE-214相、RE-123相、Bi系超导氧化物等的制备方法进行了总结,并对各种制备方法的制备原理、制备过程、采用的相关技术参数及获得的晶体类型和晶体质量进行客观分析,比较了各种高温氧化物超导体相关制备方法的优缺点以及各种方法的适用情况.在上述分析的基础上,针对不同类型的高温氧化物超导体,针对性地提出获得大尺寸、高质量高温超导氧化物品体的最佳制备方式.","authors":[{"authorName":"贾连锁","id":"b5247063-2579-453c-8ea1-87ebcac68f76","originalAuthorName":"贾连锁"},{"authorName":"张京德","id":"6e924f61-ae8a-4d1a-857b-8f60e54e2463","originalAuthorName":"张京德"},{"authorName":"金桥","id":"b1a79003-7c2e-4305-9e8e-e1a1d93f2aa2","originalAuthorName":"金桥"}],"doi":"","fpage":"2113","id":"82f24658-1434-431f-8c37-c19779ca3243","issue":"8","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a2c0667c-1309-41cb-b179-4cd7674b295d","keyword":"高温超导体","originalKeyword":"高温超导体"},{"id":"feb65dd0-4f73-41a4-8d10-b41949484aba","keyword":"氧化物超导体","originalKeyword":"铜氧化物超导体"},{"id":"7768d4c2-62dc-4bda-8071-cc13e71a7d86","keyword":"制备技术","originalKeyword":"制备技术"}],"language":"zh","publisherId":"rgjtxb98201408041","title":"高温氧化物超导体制备技术的研究进展","volume":"43","year":"2014"},{"abstractinfo":"介绍了p型铁矿结构氧化物ABO2的晶体结构、电子结构和光、电学特性,讨论了A位原子、B位原子和氧原子对材料光、电学性能的影响,综述了p型铁矿结构透明导电氧化物(Transparent Conductive Oxide,TCO)薄膜的制备方法与研究现状.","authors":[{"authorName":"邓赞红","id":"7e9ae5ac-4a6f-4ce9-9bfa-10b066f9a744","originalAuthorName":"邓赞红"},{"authorName":"董伟伟","id":"df403a30-669a-4ef0-a58c-1c483fb8537c","originalAuthorName":"董伟伟"},{"authorName":"陶汝华","id":"ed64083a-02f7-49a1-b8af-2df82d296bfe","originalAuthorName":"陶汝华"},{"authorName":"苏清磊","id":"8e7f22fc-ba8e-497f-9b5f-4de3f31d6854","originalAuthorName":"苏清磊"},{"authorName":"方晓东","id":"6ef39d85-d4eb-4980-a866-bbca35315e96","originalAuthorName":"方晓东"}],"doi":"","fpage":"37","id":"b3e1dc33-5966-4760-a08b-ae4e33c3caf3","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e15ad5e7-be20-423c-8ed1-1d5ee9c094c3","keyword":"铁矿","originalKeyword":"铜铁矿"},{"id":"288c63f3-fddd-4a6b-875d-c2f858bb3779","keyword":"透明导电氧化物","originalKeyword":"透明导电氧化物"},{"id":"ec642e0b-a42d-40be-97b5-7c30dcea3303","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"cldb200603010","title":"p型铁矿结构氧化物材料研究进展","volume":"20","year":"2006"},{"abstractinfo":"采用沉淀法制备了作为锂离子电池负极材料的纳米锡复合氧化物粉末, 并用X射线衍射对其结构进行了分析、透射电镜对其形貌进行了表征、充放电和循环伏安法等对其电化学性能进行了测试. 结果表明: 采用沉淀法可以制备出颗粒粒度较均匀、尺寸为90nm的锡复合氧化物; 充放电30次到50次, 锡复合氧化物放电容量由254.4 mAh/g衰减到241.1 mAh/g, 放电容量保持率较高(95%), 说明纳米锡复合氧化物具有较高的放电容量和良好的循环性能.","authors":[{"authorName":"刘斌","id":"64cf3df5-0d25-4b38-8f13-7ba1ef2f37b0","originalAuthorName":"刘斌"},{"authorName":"胡文胜","id":"b8a8ffa6-6c31-4ba0-8e68-2b603307297c","originalAuthorName":"胡文胜"},{"authorName":"宋彬","id":"8b046a13-f584-4811-b514-14f5222573cb","originalAuthorName":"宋彬"},{"authorName":"贾殿赠","id":"75d7810d-efe0-4498-bcf7-1bb7b1f71a92","originalAuthorName":"贾殿赠"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.00729","fpage":"729","id":"ec48bf99-beba-4b0e-ae74-bd40780c036b","issue":"7","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"503d4b04-e055-42c1-989c-b051efed5b54","keyword":"纳米锡复合氧化物","originalKeyword":"纳米锡铜复合氧化物"},{"id":"f9d6468e-233d-44f8-8e39-b8c34de8fabc","keyword":" precipitation method","originalKeyword":" precipitation method"},{"id":"1340247a-7cc5-4654-88dc-3821b241913a","keyword":" anode material","originalKeyword":" anode material"}],"language":"zh","publisherId":"1000-324X_2010_7_5","title":"纳米锡复合氧化物的制备与电化学性能","volume":"25","year":"2010"}],"totalpage":6130,"totalrecord":61295}