{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对C/SiC低温氧化易失效的不足,研究了CVI B-C基体改性2D C/SiC在700℃湿氧中100MPa下加载至60h的氧化行为,利用SEM和TEM观察了改性材料不同服役时间的微结构特征,揭示了演变规律.研究表明,CVI B-C基体改性使C/SiC低温抗氧化能力显著提升.基体裂纹及其在应力加载下的开裂均为氧化气体提供进入通道,而后可被B-C氧化产物B2O3封填,抑制内部C消耗.CVI B-C与其氧化产物一同参与缺陷愈合.在60h内,B-C改性层愈合能力尚未完全发挥,可服役更长时间.","authors":[{"authorName":"李思维","id":"394ec7c3-9739-454c-9fdc-1b6f61629bdc","originalAuthorName":"李思维"},{"authorName":"张立同","id":"658c1a30-b787-4149-b1ce-9c9a0c9914f1","originalAuthorName":"张立同"},{"authorName":"永胜","id":"f0628295-53e1-4ba4-8334-2f785c231c33","originalAuthorName":"刘永胜"},{"authorName":"成来飞","id":"eadeab2a-54a9-4f79-8e62-188dd65da0c1","originalAuthorName":"成来飞"},{"authorName":"冯祖德","id":"353c723f-a4ea-4d5c-bf9e-eae343067559","originalAuthorName":"冯祖德"},{"authorName":"栾新刚","id":"6361c37a-049c-4d91-9cb3-d947c48dabcb","originalAuthorName":"栾新刚"},{"authorName":"张伟华","id":"343d3c23-7a19-4680-a8f8-84cc33076a26","originalAuthorName":"张伟华"},{"authorName":"杨文彬","id":"ca3839b8-254e-4f15-9e5c-348aa12097bc","originalAuthorName":"杨文彬"}],"doi":"10.3724/SP.J.1077.2010.01199","fpage":"1199","id":"3522e883-fb14-48eb-b5ee-c68e9c82f4eb","issue":"11","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"704453bc-79a0-435f-a149-3889c9e8e988","keyword":"C/SiC复含材料","originalKeyword":"C/SiC复含材料"},{"id":"69df2b42-dcfb-4bfc-9dee-5dab05174bba","keyword":"基体改性","originalKeyword":"基体改性"},{"id":"a5b915a6-2218-4590-b356-e55c2029a413","keyword":"CVI B-C涂层","originalKeyword":"CVI B-C涂层"},{"id":"0ea781e3-b8be-4c3c-bf36-37ee3e37b639","keyword":"自愈合","originalKeyword":"自愈合"},{"id":"87b497c4-a16c-4415-92a0-711dcd9c7ee1","keyword":"SEM","originalKeyword":"SEM"},{"id":"69298768-3700-4594-9e81-fb40654640a2","keyword":"TEM","originalKeyword":"TEM"}],"language":"zh","publisherId":"wjclxb201011016","title":"CVI B-C基体改性2D C/SiC在低温湿氧中的自愈合行为","volume":"25","year":"2010"},{"abstractinfo":"利用显微CT表征了采用化学气相渗透法(CVI)制备的3D C/SiC复合材料的三维结构,评价了显微CT的微结构表征能力.结果表明:显微CT能够有效地分辨C/SiC复合材料的织构形貌、材料内部缺陷(孔隙和SiC基体密度差异).通过重构孔隙的三维结构,揭示了CVI过程预制体内部存在沉积气体滞留;通过重构孔隙壁的形貌,揭示了CVI SiC基体表面为球状颗粒形貌,并与化学气相沉积(CVD)SiC涂层表面SEM形貌进行对比,阐明了预制体内外在气相沉积过程中存在压差的本质.","authors":[{"authorName":"冯炎建","id":"4474bc5e-865b-4bde-9ec7-ee7cb0678716","originalAuthorName":"冯炎建"},{"authorName":"冯祖德","id":"f338f0b6-5029-414e-81f6-b5b47e76d6ac","originalAuthorName":"冯祖德"},{"authorName":"李思维","id":"aaafeb63-ca65-40ab-9545-3650d14a96cb","originalAuthorName":"李思维"},{"authorName":"张伟华","id":"668396e4-e12a-4592-89bb-bd126c5c489b","originalAuthorName":"张伟华"},{"authorName":"栾新刚","id":"5c09b6a0-4028-4acd-8ab0-f7743cda8226","originalAuthorName":"栾新刚"},{"authorName":"永胜","id":"bcc4c55b-9388-4a28-9dd9-5732171d11d7","originalAuthorName":"刘永胜"},{"authorName":"成来飞","id":"1a90931c-2ed9-4b0e-8fcf-0cd734f42610","originalAuthorName":"成来飞"}],"doi":"10.3969/j.issn.1005-5053.2011.2.010","fpage":"49","id":"05adb19d-a388-4390-8e8b-8fa13bb12c1a","issue":"2","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"76b3d336-b258-43d3-8d81-ed95f39332fc","keyword":"C/SiC复合材料","originalKeyword":"C/SiC复合材料"},{"id":"2123e045-14c1-48de-a164-e1b5fb743e96","keyword":"显微CT","originalKeyword":"显微CT"},{"id":"34f1912a-c073-443b-b250-6a6f60db4798","keyword":"微结构","originalKeyword":"微结构"},{"id":"5292e291-bbb5-4fa8-8f80-72ab943c2709","keyword":"预制体","originalKeyword":"预制体"},{"id":"b1d9e751-3eca-4fd0-a824-66dd7d023ce9","keyword":"孔隙","originalKeyword":"孔隙"}],"language":"zh","publisherId":"hkclxb201102010","title":"C/SiC复合材料微结构的显微CT表征分析","volume":"31","year":"2011"},{"abstractinfo":"为了满足高推重比航空发动机长时热力氧化环境的使用需求,连续纤维增韧碳化硅陶瓷基复合材料正朝自愈合方向发展.本文介绍自愈合碳化硅陶瓷基复合材料的微结构与性能,自愈合与强韧化机理,制造方法和工艺特点及其在航空发动机热端部件的应用情况,表明多元多层微结构形成了\"层层设防,就地消灭\"的氧化防御体系,是复合材料实现自愈合与强韧化的关键.自愈合碳化硅陶瓷基复合材料能够满足发动机高温服役环境要求,显著降低发动机的结构重量,从而有效提高发动机的推重比.","authors":[{"authorName":"张立同","id":"3fabafb3-1305-47bc-a199-c4d8e70928f4","originalAuthorName":"张立同"},{"authorName":"成来飞","id":"72b13bda-8b94-408a-8fe8-3450ee70715d","originalAuthorName":"成来飞"},{"authorName":"徐永东","id":"35b1b81b-b3bc-4f2c-b2c1-c1641aa3438f","originalAuthorName":"徐永东"},{"authorName":"永胜","id":"e934f109-1a9a-4e05-ab5a-3eb9da5621ce","originalAuthorName":"刘永胜"},{"authorName":"曾庆丰","id":"db1bf20e-eb71-47f1-b2c3-8f2993e79300","originalAuthorName":"曾庆丰"},{"authorName":"董宁","id":"72b106a0-a529-4886-80ed-1f6cc5b54757","originalAuthorName":"董宁"},{"authorName":"栾新刚","id":"f9df2b93-109a-4e6a-909e-bd302c2b9c1e","originalAuthorName":"栾新刚"}],"doi":"10.3969/j.issn.1005-5053.2006.03.048","fpage":"226","id":"239679b7-7dbb-4432-b104-f00166dbab6d","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"3e595f18-4414-4d3e-bc38-aea621207ecd","keyword":"自愈合","originalKeyword":"自愈合"},{"id":"514d8862-a277-4bf0-8300-fc23bf72afd0","keyword":"碳化硅陶瓷基复合材料","originalKeyword":"碳化硅陶瓷基复合材料"},{"id":"8f4a4b9c-5efa-4cc1-9d6c-092aa9421e11","keyword":"应用","originalKeyword":"应用"},{"id":"533b09cc-f85e-4dce-a92a-755d35e85035","keyword":"多元多层微结构","originalKeyword":"多元多层微结构"}],"language":"zh","publisherId":"hkclxb200603048","title":"自愈合碳化硅陶瓷基复合材料研究及应用进展","volume":"26","year":"2006"},{"abstractinfo":"对C/SiC复合材料表面SiC涂层在1300℃干氧和湿氧环境中退火处理60 h,利用显微CT技术对高温氧化后的SiC涂层进行无损检测。通过重构SiC涂层不同深度的氧化形貌,并利用SEM、EDS和XRD进行辅助验证,得到沿SiC涂层表面和厚度方向的氧化形貌。结果表明:显微CT能有效地检测氧化后SiC涂层中存在的氧化产物SiO2及其氧化深度,其在表面及深度方向均呈非均匀分布;在干氧环境中SiC涂层的氧化面积沿着涂层的深度方向呈减少趋势,而在湿氧环境中SiC涂层的氧化面积沿着涂层的深度方向呈先增加后递减的趋势,验证了C/SiC复合材料表面SiC涂层在干氧和湿氧中不同的氧化机制。","authors":[{"authorName":"冯炎建","id":"9419b0b8-298a-471c-b6bc-a57f3bcf3ed4","originalAuthorName":"冯炎建"},{"authorName":"冯祖德","id":"5869ee23-4dbf-4df7-bf1d-fc898253c904","originalAuthorName":"冯祖德"},{"authorName":"李思维","id":"0241e135-5a9a-4ed5-9e95-28051630211b","originalAuthorName":"李思维"},{"authorName":"张伟华","id":"cf3e8f4d-94d4-43cc-920d-5b6cdd9f92de","originalAuthorName":"张伟华"},{"authorName":"栾新刚","id":"472cbffb-6ebb-4662-8d73-b1238a967d57","originalAuthorName":"栾新刚"},{"authorName":"永胜","id":"872fd7d0-c573-4d82-a0ba-9678083684a1","originalAuthorName":"刘永胜"},{"authorName":"成来飞","id":"1f562cdc-01a0-4ae9-ae8e-247390d80d4f","originalAuthorName":"成来飞"}],"doi":"","fpage":"126","id":"d320e614-b1b4-4468-b69c-a0b601997ac8","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"cd384d07-8616-442b-b9d2-a987d10eb9fe","keyword":"C/SiC复合材料","originalKeyword":"C/SiC复合材料"},{"id":"dc0acfa0-ea32-474d-bc31-cc7276e78036","keyword":"SiC涂层","originalKeyword":"SiC涂层"},{"id":"aa8bb8f9-3a09-4bdc-9a64-631f47b608ef","keyword":"显微CT","originalKeyword":"显微CT"},{"id":"01f5cdf1-61e5-41f2-92b9-81fb68b3cecb","keyword":"干氧","originalKeyword":"干氧"},{"id":"eef6c0e2-3028-4464-8991-792a98da0cfe","keyword":"湿氧","originalKeyword":"湿氧"}],"language":"zh","publisherId":"fhclxb201105020","title":"C/SiC表面SiC涂层氧化的显微CT无损检测与分析","volume":"28","year":"2011"},{"abstractinfo":"采用以B-C陶瓷为基体自愈合改性组元的2D-C/[SiC-(B-C)]以及经过硅硼玻璃改性的2D-C/[SiC-(B-C)]制备浮壁瓦片, 分别在1000、1200、1350℃下对其进行发动机燃烧室环境考核. 对考核后的浮壁瓦片进行取样, 并在室温下进行拉伸强度以及三点弯曲强度测试. 结果发现: 经过环境考核试样的力学性能都有不同程度的提高, 拉伸强度和三点弯曲强度随着考核温度的升高而提高, 其中三点弯曲强度的升高速率更快. 通过SEM观察, B-C自愈合组元氧化生成的玻璃相以及改性硅硼玻璃相在考核过程中有效地封填了试样的孔隙和裂纹. 最后通过力学性能测试结合SEM观察, 初步分析了两种复合材料在航空发动机燃烧室中的愈合机制. ","authors":[{"authorName":"光海","id":"a507bc48-9d3c-44e6-8362-1d5c7f457dfe","originalAuthorName":"刘光海"},{"authorName":"成来飞","id":"21af1680-7677-48e3-897d-87d297c44ee8","originalAuthorName":"成来飞"},{"authorName":"栾新刚","id":"18fe75d9-190e-41d7-a098-3a43f1d7e976","originalAuthorName":"栾新刚"},{"authorName":"永胜","id":"e71acd23-e3b0-4589-a2b9-da33e3ff7616","originalAuthorName":"刘永胜"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00969","fpage":"969","id":"05787672-2ef9-427a-abfd-ae7aa14a2afd","issue":"9","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3a95a510-259f-4853-ac68-99d999fc2a65","keyword":"2D-C/[SiC-(B-C)]","originalKeyword":"2D-C/[SiC-(B-C)]"},{"id":"328b5a2d-e3ea-4a75-8c02-6d5d66c61835","keyword":" C/SiC","originalKeyword":" C/SiC"},{"id":"67189fa1-27a5-463a-8599-6359dc040ed4","keyword":" self-healing","originalKeyword":" self-healing"},{"id":"f38e44e4-61af-4ebb-b7e1-16fdfa16a27f","keyword":" glass phase","originalKeyword":" glass phase"},{"id":"71d9a330-78b3-43c6-8058-0e7f0dab1ba7","keyword":" B-C component","originalKeyword":" B-C component"},{"id":"224b4294-8346-4712-b5de-4cac4d3abaca","keyword":" oxidation","originalKeyword":" oxidation"}],"language":"zh","publisherId":"1000-324X_2011_9_13","title":"2D-C/[SiC-(B-C)]复合材料在航空发动机燃烧室中的自愈合行为研究","volume":"26","year":"2011"},{"abstractinfo":"在多孔C/SiC中渗入SiB4微粉后,采用先驱体浸渍裂解(PIP)结合化学气相渗透(CVI)法进行致密化制备C/SiC-SiB4复合材料.利用XRD、EDS、SEM分析了材料的组分及微结构.研究了材料在500~1000℃静态空气的氧化行为,并与致密C/SiC复合材料的氧化行为进行了比较.结果表明,SiB4主要渗入到纤维束间,它与随后PIP及CVI法引入的SiC较好地结合在一起.在氧化过程中,SiB4起自愈合作用,它能减缓碳纤维和界面的氧化.在600~900℃氧化10h后,C/SiC-SiB4的失重率均比致密C/SiC小,抗弯强度没有明显降低,且均比致密C/SiC高.","authors":[{"authorName":"童长青","id":"efa732cc-8e01-4f92-a5d1-621ada3b77cb","originalAuthorName":"童长青"},{"authorName":"成来飞","id":"0dfdcee8-495d-4050-afbb-4696d6dfb3b0","originalAuthorName":"成来飞"},{"authorName":"殷小玮","id":"a4864db6-12b1-493b-99e7-4f04e9ee30a6","originalAuthorName":"殷小玮"},{"authorName":"永胜","id":"2e3e6977-1bb6-4496-b624-6f21f3fe1b3c","originalAuthorName":"刘永胜"},{"authorName":"张立同","id":"fb75a82a-5edf-4682-8aca-0d6d87053a73","originalAuthorName":"张立同"},{"authorName":"鲁波","id":"2e389264-6afa-4be8-b808-a68bb643d728","originalAuthorName":"鲁波"}],"doi":"","fpage":"1982","id":"2214c37b-6a81-4ad8-816b-43d9e665dffb","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"82ecfa86-912a-46dc-8f88-451c4c1ef0a9","keyword":"C/SiC-SiB4复合材料","originalKeyword":"C/SiC-SiB4复合材料"},{"id":"8bdb34e5-3115-4218-b4ba-93a0d405321e","keyword":"PIP","originalKeyword":"PIP"},{"id":"2430b9e4-3294-417c-8b4c-1cb540d120ac","keyword":"CVI","originalKeyword":"CVI"},{"id":"d8b8a99e-3eea-4eda-a312-f86d906b3fbb","keyword":"氧化","originalKeyword":"氧化"}],"language":"zh","publisherId":"gncl200812013","title":"C/SiC-SiB4复合材料的制备及氧化行为","volume":"39","year":"2008"},{"abstractinfo":"采用化学气相沉积法制备了BCx涂层,研究了水氧耦合环境中,CVD-BCx的氧化过程机理并获得CVD-BCx氧化的动力学参数.CVD-BCx氧化生成的B2O3可以对裂纹进行封填,利用CVD-BCx氧化时CVD-BCx的消耗速率和B2O3的生成速率,对微裂纹的愈合时间进行预测,并用层状BCx/SiC结构中的预制裂纹进行实验验证.结果表明,理论预测结果与实验验证能够很好地吻合.","authors":[{"authorName":"张伟华","id":"f721e682-6f25-4dcd-bcfc-d3acc2f57097","originalAuthorName":"张伟华"},{"authorName":"成来飞","id":"5ca33c24-ccd2-4727-8281-1b001cf0585c","originalAuthorName":"成来飞"},{"authorName":"永胜","id":"8d079d71-90b5-47c6-be38-b096cfd7167e","originalAuthorName":"刘永胜"},{"authorName":"栾新刚","id":"324a6e05-44cc-442f-9eaf-ff3f13430e47","originalAuthorName":"栾新刚"}],"doi":"10.3969/j.issn.1005-5053.2014.1.005","fpage":"27","id":"22bd61e3-c618-4217-94d0-1d856e0132a3","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"86cb811d-115c-4ab7-91f4-e2c29b2a85ec","keyword":"CVD-BCx","originalKeyword":"CVD-BCx"},{"id":"437ba0d8-3150-4260-9608-03c3b094e9c0","keyword":"涂层","originalKeyword":"涂层"},{"id":"83073480-cf88-4803-a503-072e1bfcb927","keyword":"水氧环境","originalKeyword":"水氧环境"},{"id":"57eb1f93-41a3-4d87-8420-08c165b87e26","keyword":"自愈合","originalKeyword":"自愈合"},{"id":"2769296d-59f4-415c-8434-398ac3b41411","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"hkclxb201401005","title":"CVD-BCx在水氧环境中的自愈合机理","volume":"34","year":"2014"},{"abstractinfo":"采用CVI结合浆料浸渍工艺制备2D C/SiC复合材料.研究了SiC微粉对复合材料微结构和力学性能的影响.结果表明,当碳纤维预制沉积SiC 80h后,微粉主要渗入到纤维束间.复合材料的力学强度随着渗微粉前CVI时间的增加及渗入浆料浓度的降低而增加.微粉的渗入大大降低了材料的层间剪切强度,而对材料的拉伸强度影响较小.","authors":[{"authorName":"童长青","id":"21ce50ec-9542-4fee-be8b-8d42ad14d35f","originalAuthorName":"童长青"},{"authorName":"成来飞","id":"ddbe42ee-3128-434a-89e0-5770951a8cc0","originalAuthorName":"成来飞"},{"authorName":"永胜","id":"0e601ebf-0065-4fa2-af3c-400cc39ba13d","originalAuthorName":"刘永胜"},{"authorName":"张立同","id":"f947f722-b262-4f2f-8e86-a21e50b524f0","originalAuthorName":"张立同"}],"doi":"","fpage":"317","id":"24c83ea5-4cb5-4c7d-8fbb-aeae0aa12e58","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"3d2b342d-3bcd-4c92-885c-34e405e7f33a","keyword":"2D C/SiC","originalKeyword":"2D C/SiC"},{"id":"6b2a09db-f907-4ceb-bc37-c0ef3e0584d7","keyword":"微结构","originalKeyword":"微结构"},{"id":"17386b42-3e0b-4fc5-99d4-8b5355d308ee","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"26f29b2d-f8d0-4397-9e62-1734f9490804","keyword":"CVI","originalKeyword":"CVI"},{"id":"efd4ad86-79df-4ff2-a0a8-30736053f8a3","keyword":"浆料浸渍","originalKeyword":"浆料浸渍"}],"language":"zh","publisherId":"clkxygc201003001","title":"CVI结合浆料浸渍法制备2D C/SiC复合材料的微观结构和力学性能","volume":"28","year":"2010"},{"abstractinfo":"采用CVI结合SI及PIP工艺制备2D C/SiC-ZrB2复合材料.研究了PIP工艺中循环浸渍次数及热处理对复合材料结构和力学性能的影响.比较了多孔C/SiC浸渍浆料后用PIP结合CVI致密化和仅用CVI致密化的效果.结果表明:浸渍裂解后,热处理温度相同,热处理次数对复合材料的开孔率和弯曲强度影响不大.2D C/SiC-ZrB2复合材料的弯曲强度不随PIP次数的增多而增加,PIP处理二次后,复合材料的强度逐渐增加,PIP处理五次,强度达到最大值,制备的复合材料开孔率为8.0%、弯曲强度为423 MPa.SI后用PIP结合CVI致密化比仅用CVI致密化效果好.","authors":[{"authorName":"童长青","id":"aad84b66-8830-4eb9-b5f8-8c0bc95f7b1b","originalAuthorName":"童长青"},{"authorName":"成来飞","id":"49dfedb2-614e-45c4-ae4d-439ccc4c572e","originalAuthorName":"成来飞"},{"authorName":"永胜","id":"451ab833-e8ce-4961-bf04-75ed37d7faee","originalAuthorName":"刘永胜"},{"authorName":"殷小玮","id":"92e5fe21-2d4b-46e9-8d04-caee23e8a3ea","originalAuthorName":"殷小玮"},{"authorName":"张立同","id":"02b5bc89-9335-4580-80fc-f05aa58c2538","originalAuthorName":"张立同"}],"doi":"10.3969/j.issn.1007-2330.2011.03.011","fpage":"42","id":"31bbb47c-a832-4dee-a86c-c300cc2b4ddf","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"2d69c1d8-b127-44c4-863c-8779d32c1fbe","keyword":"C/SiC-ZrB2复合材料","originalKeyword":"C/SiC-ZrB2复合材料"},{"id":"70c9098b-1343-42e8-a4bf-79c65c6f510b","keyword":"化学气相渗透","originalKeyword":"化学气相渗透"},{"id":"2d6549c3-4586-4178-9079-13fd17b7d195","keyword":"浆料浸渍","originalKeyword":"浆料浸渍"},{"id":"f423e1da-7ddd-4abc-b2ec-aa5d37128e02","keyword":"先驱体浸渍裂解","originalKeyword":"先驱体浸渍裂解"}],"language":"zh","publisherId":"yhclgy201103011","title":"PIP工艺对2D C/SiC-ZrB2复合材料结构和力学性能的影响","volume":"41","year":"2011"},{"abstractinfo":"通过对V型、半圆型和细线型双边缺口2D-Cf/SiC复合材料试件进行拉伸实验,研究了不同形状缺口对试件拉伸力学行为的影响.通过引伸计获得了拉伸过程中缺口段材料整体拉伸变形与净截面应力之间的对应关系;通过应变片获得了缺口附近局部材料的应变数值,直观体现了缺口周围的应变集中现象;依据应变变化规律,分析了双边缺口试件的损伤失效进程.通过对比标准拉伸试件,全面分析了2D-Cf/SiC复合材料双边缺口试件拉伸净强度的主要影响因素和破坏机理;最后通过有限元模拟,得到了三种缺口试件缺口段材料的应变分布情况.结果表明:拉伸过程中缺口试件缺口段材料损伤失效进程具有明显的非同步性,净拉伸强度随缺口形状不同出现不同程度下降;有限元模拟结果与实验结果吻合较好.","authors":[{"authorName":"郭洪宝","id":"2cd4b367-0d1b-460e-94e9-5ffb7f807be2","originalAuthorName":"郭洪宝"},{"authorName":"王波","id":"23735dbd-5f7d-45de-a4c9-eb4155f4ff4c","originalAuthorName":"王波"},{"authorName":"矫桂琼","id":"00e05b55-f39a-4349-bcc7-11ad694aa868","originalAuthorName":"矫桂琼"},{"authorName":"永胜","id":"181ba84c-aefe-4724-8746-0e09fc2e6fec","originalAuthorName":"刘永胜"}],"doi":"10.3969/j.issn.1001-4381.2013.05.017","fpage":"83","id":"6083caf4-3acd-4ceb-a526-ea8ec1776a1b","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"35a41b2f-7f1d-47d6-a0fc-58bd3dd71476","keyword":"2D-Cf/SiC复合材料","originalKeyword":"2D-Cf/SiC复合材料"},{"id":"0e4a475d-376b-4bcb-93c5-0238a4b1a737","keyword":"缺口试件","originalKeyword":"缺口试件"},{"id":"c387876b-d17b-405f-a776-c8dd10825b0d","keyword":"拉伸","originalKeyword":"拉伸"},{"id":"c2f30ea7-a964-405a-935b-30c3c1dcbcf2","keyword":"力学行为","originalKeyword":"力学行为"}],"language":"zh","publisherId":"clgc201305017","title":"2D-Cf/SiC复合材料缺口试件拉伸力学行为研究","volume":"","year":"2013"}],"totalpage":7,"totalrecord":69}