{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介质材料电导率是影响卫星充电过程的重要材料参数,它决定着航天器上电荷的分布状态以及电流平衡建立的快慢.常规的电导率测量方法完全不考虑空间真实带电环境,其测试结果用于卫星带电防护设计将会产生较大的误差.本文建立了用传统三电极法和电荷衰减法测试介质材料电导率的测试系统,对卫星常用的FR4材料进行了测试,测试结果与国外的结果相近.","authors":[{"authorName":"李存惠","id":"a3dee99a-a5d1-4166-a6f5-2559f89d5fb8","originalAuthorName":"李存惠"},{"authorName":"柳青","id":"02a56729-a6e8-484a-b460-40c1d8035b71","originalAuthorName":"柳青"},{"authorName":"秦晓刚","id":"a60e530f-9ad2-4a43-82a3-7be008cdc0f1","originalAuthorName":"秦晓刚"},{"authorName":"陈益峰","id":"c30b8ef5-a441-467e-8022-757e1ff87529","originalAuthorName":"陈益峰"},{"authorName":"杨生胜","id":"517fda43-5be5-4640-82d7-881f85c51c86","originalAuthorName":"杨生胜"}],"doi":"10.3969/j.issn.1007-2330.2014.04.016","fpage":"78","id":"4d9acca0-488f-450f-aeea-3380dacc7a5a","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"1625c673-7905-4108-a2be-d076c92d06cf","keyword":"电荷衰减法","originalKeyword":"电荷衰减法"},{"id":"8fe2f6f1-33dc-419e-940b-f04ba2032e6a","keyword":"FR4","originalKeyword":"FR4"},{"id":"40271808-bf50-4aa5-94a2-4edb40a43e8a","keyword":"体电阻","originalKeyword":"体电阻"},{"id":"608d7caf-468d-466e-837a-151184a5e0ae","keyword":"电导率","originalKeyword":"本征电导率"}],"language":"zh","publisherId":"yhclgy201404016","title":"航天用FR4材料的电导率测试","volume":"44","year":"2014"},{"abstractinfo":"在不同温度下,采用自主设计的测试设备测试了不同纯度和不同厚度的冶金级硅的电导率,分析了冶金级硅的纯度对电导率的影响.结果表明:采用厚度较薄的硅片进行电导率测试能更准确反映出电导率随温度的变化关系;当温度达到650℃以上时,激发作用明显,冶金级硅电导率开始迅速增大,并且纯度较高、金属杂质含量较少的硅电导率随温度的升高增幅较大;最后,根据测量出的电导率进行了数值拟合,得到了冶金级硅电导率随温度变化的数学表达式.","authors":[{"authorName":"杨玺","id":"59f256ce-5ac7-4c6b-8cef-fbf687a8adb8","originalAuthorName":"杨玺"},{"authorName":"吕国强","id":"143a9305-c673-46fc-954d-8205fba55320","originalAuthorName":"吕国强"},{"authorName":"马文会","id":"8ab1dd65-0610-47d1-8be8-0d2b91bee82b","originalAuthorName":"马文会"},{"authorName":"罗涛","id":"bc344bf2-d348-4ab1-9853-da28fbe5e779","originalAuthorName":"罗涛"}],"doi":"","fpage":"71","id":"bfe39e3a-9ba2-4b63-8cf8-564b2ce5947a","issue":"12","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"628751f8-c7a0-4682-8263-861c580b9405","keyword":"冶金级硅","originalKeyword":"冶金级硅"},{"id":"8739370f-0881-4816-8f3e-210370f0c4c1","keyword":"电导率","originalKeyword":"电导率"},{"id":"20ce9868-8f6c-43d1-915e-80b98d389594","keyword":"温度变化","originalKeyword":"温度变化"},{"id":"6ac2b42b-1e7b-4ef2-9aec-e2c06775d146","keyword":"金属杂质","originalKeyword":"金属杂质"}],"language":"zh","publisherId":"jxgccl201312017","title":"不同纯度冶金级硅电导率随温度的变化","volume":"37","year":"2013"},{"abstractinfo":"采用交流阻抗技术研究了在1723—1633 K温度范围内24.3%CaO-23.3%SiO2-13.8%Al2O3-15.3%MgO-23.3%TiO2高钛渣的电导率与TiC含量及粒度的关系. 结果表明, 渣中的TiC为带电体, 降低炉渣的电导率. 当TiC含量为0.5%时, 炉渣的电导率最小;增加TiC的粒度, 炉渣电导率增加. 根据炉渣恒温过程中电导率的变化规律, 计算了钙钛矿相结晶反应的速率常数和活化能.","authors":[{"authorName":"钟和香","id":"ef21eada-ede6-40dc-8bfb-99ce9980cf20","originalAuthorName":"钟和香"},{"authorName":"王淑兰","id":"77bf6da8-359a-4b91-abbe-e01019ffc0e4","originalAuthorName":"王淑兰"},{"authorName":"张丽君","id":"deb8afe9-9267-4882-ad43-1e820ca2b329","originalAuthorName":"张丽君"}],"categoryName":"|","doi":"","fpage":"515","id":"867e99a1-4b42-4da1-9172-d4905ce7da5d","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4656c18e-5561-429b-80f4-f32e7e7e41d8","keyword":"高钛渣","originalKeyword":"高钛渣"},{"id":"e1de6b1d-7e22-4693-9951-c9621d66c1ac","keyword":"conductivity","originalKeyword":"conductivity"},{"id":"6c2d7f3a-2371-4f98-b21c-97f41bbbc2c9","keyword":"TiC","originalKeyword":"TiC"}],"language":"zh","publisherId":"0412-1961_2004_5_1","title":"TiC对高钛渣电导率的影响","volume":"40","year":"2004"},{"abstractinfo":"采用交流阻抗技术研究了在1723-1633 K温度范围内24.3%CaO-23.3%SiO2-13.8%Al2O3-15.3%MgO-23.3%TiO2高钛渣的电导率与TiC含量及粒度的关系.结果表明,渣中的TiC为带电体,降低炉渣的电导率.当TiC含量为0.5%时,炉渣的电导率最小;增加TiC的粒度,炉渣电导率增加.根据炉渣恒温过程中电导率的变化规律,计算了钙钛矿相结晶反应的速率常数和活化能.","authors":[{"authorName":"钟和香","id":"9bfa6cb7-3196-42c3-9a7f-552a5378db6a","originalAuthorName":"钟和香"},{"authorName":"王淑兰","id":"cde71a34-b755-4e96-83ec-8936d03366db","originalAuthorName":"王淑兰"},{"authorName":"张丽君","id":"fa7571de-9564-425a-a15a-22265d122ace","originalAuthorName":"张丽君"}],"doi":"10.3321/j.issn:0412-1961.2004.05.014","fpage":"515","id":"a3eafe90-1f75-4f2f-9813-8353031fd3bd","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"c0a03cae-9a42-4017-9370-1066811d8195","keyword":"高钛渣","originalKeyword":"高钛渣"},{"id":"4ce1c40d-518f-48f5-bc49-5d5c62bea360","keyword":"电导率","originalKeyword":"电导率"},{"id":"a670578e-3282-40a1-8604-912bb5e9d430","keyword":"TiC","originalKeyword":"TiC"},{"id":"fc5defaf-f6dc-4a60-9a02-2897a363e601","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"jsxb200405014","title":"TiC对高钛渣电导率的影响","volume":"40","year":"2004"},{"abstractinfo":"用sol-gel和固溶强化两步法制备了在压电陶瓷材料PZT中掺杂Y0.3Ba0.6Na0.1CuOx或Y0.3Ba0.55Na0.15CuOx的复合陶瓷材料.测试表明,样品随温度的升高电导率增大,在室温~950℃左右,电导率最高可变化5个数量级,即7.32×10-5~2.18×100 Ω-1cm-1,具有很强的热敏特性.","authors":[{"authorName":"靳建华","id":"1d2ad40c-9675-4dc4-b13e-845822504b7b","originalAuthorName":"靳建华"},{"authorName":"白炳贤","id":"b581f01b-29fa-4fb1-96f0-2d75538420f2","originalAuthorName":"白炳贤"},{"authorName":"常新红","id":"9d0417d1-0a89-4df9-944f-df199e8be0c8","originalAuthorName":"常新红"},{"authorName":"白涛","id":"275f493b-f896-4e6d-94c0-94a8cc999737","originalAuthorName":"白涛"},{"authorName":"徐新生","id":"673fa9b0-0eb0-418e-898c-50e2ec63f58e","originalAuthorName":"徐新生"}],"doi":"10.3969/j.issn.1004-0277.2000.01.018","fpage":"70","id":"e628b157-5343-44e5-a593-fd21af22b48a","issue":"1","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"78090ab0-e9db-4530-abb3-113283ebc3ef","keyword":"复合氧化物陶瓷","originalKeyword":"复合氧化物陶瓷"},{"id":"e7b83012-771f-4328-ad28-01b39cca2367","keyword":"电导率","originalKeyword":"电导率"},{"id":"12c64b2a-2b35-42c0-ba7c-57b720fde8b2","keyword":"热敏特性","originalKeyword":"热敏特性"},{"id":"1529808b-2346-4799-9597-dc825085feaf","keyword":"sol-gel和固溶强化","originalKeyword":"sol-gel和固溶强化"}],"language":"zh","publisherId":"xitu200001018","title":"PZT/YBaNaCuO复合陶瓷电导率的温度特性","volume":"21","year":"2000"},{"abstractinfo":"基于Maxwell电磁理论中电解质悬浮液中粒子质量分数和电导率之间的关系,提出了一种判定纳米流体悬浮稳定性的方法,并进行了实验验证。实验中,采用"两步法"经超声振荡制备了CuO/去离子水纳米流体。利用电导率仪测量了不同质量分数时纳米流体的电导率,建立了质量分数与电导率的关系,同时研究了温度对电导率的影响。结果表明电导率随着颗粒质量分数的增加而增加,随着质量分数的减小而减小;随着温度的增长,电导率只有微小变化,可以忽略温度对电导率的影响。","authors":[{"authorName":"王亚姝","id":"47285b34-e873-4ec1-a03c-798742b6ab85","originalAuthorName":"王亚姝"},{"authorName":"苏新军","id":"3aa6b0cd-6492-4ea6-9139-4271204ca48d","originalAuthorName":"苏新军"},{"authorName":"穆延非","id":"5ff5dad0-bd34-4650-9500-3180357430d9","originalAuthorName":"穆延非"},{"authorName":"郭宪民","id":"bf7e2276-d0f1-4c13-895f-14a0dcefb23c","originalAuthorName":"郭宪民"}],"doi":"","fpage":"2200","id":"17359292-910a-47f2-9242-dcd074f7d9fb","issue":"16","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ee27ee1c-1ec2-4b6a-820a-dbc225db7b24","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"9cc08141-f346-43d2-9c7e-02c245bcfe5b","keyword":"电导率","originalKeyword":"电导率"},{"id":"9284a6c3-3e9f-41b3-864c-48f62e9d07b0","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"1ddb1eff-b8ab-408b-81c2-929bca1bda40","keyword":"质量分数","originalKeyword":"质量分数"}],"language":"zh","publisherId":"gncl201216019","title":"纳米流体悬浮稳定性和电导率的关系研究","volume":"43","year":"2012"},{"abstractinfo":"研究了高压和时效处理对铜铬合金电导率的影响.结果表明:高压处理能降低合金的电导率,而高压处理后再经适当的时效处理能提高合金的电导率,并能显著缩短电导率达到较高值所需的时效时间;合金经3 GPa压力处理后再在500℃时效2h,可获得较高的电导率,为18.76 MS· m-1.","authors":[{"authorName":"段文燕","id":"084c8803-09b8-4fdb-8202-f3cc3f6543db","originalAuthorName":"段文燕"}],"doi":"","fpage":"77","id":"c674888a-c269-4997-94b2-1eea7974d394","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"bb8db9d6-8778-4b85-a0b1-17971196f662","keyword":"铜铬合金","originalKeyword":"铜铬合金"},{"id":"289edabf-77db-4585-9105-369d08daf867","keyword":"高压处理","originalKeyword":"高压处理"},{"id":"c5bce36a-b992-457e-987d-4e6d91dc28cf","keyword":"时效处理","originalKeyword":"时效处理"},{"id":"f8f0f4a6-0a1f-4f66-acc1-a7b335eeb808","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"jxgccl201303019","title":"高压和时效处理对铜铬合金电导率的影响","volume":"37","year":"2013"},{"abstractinfo":"利用射频等离子体增强化学气相沉积(RF-PECVD)技术,以B2H6为掺杂剂,在玻璃衬底上制备了厚度为40nm左右的p型微晶硅薄膜.为获得高电导率高晶化的薄膜,采用正交实验法对衬底温度、氢稀释比及硼烷掺杂比等主要沉积参数进行初步优化.Raman光谱和电导率测试结果表明:(1)在实验选取的参数范围内,衬底温度是影响薄膜暗电导率和晶化的最主要因素,其次是氢稀释比,硼烷掺杂比的影响相对较小;(2)通过正交优化,获得了暗电导率为2.05S·cm-1、晶化为86%的p型微晶硅薄膜.","authors":[{"authorName":"赵尚丽","id":"c9711c8b-09ad-4525-b374-d3a01da6a99b","originalAuthorName":"赵尚丽"},{"authorName":"杨仕娥","id":"5e34ee9c-0bc7-4ed6-a593-ce3b42ba1e85","originalAuthorName":"杨仕娥"},{"authorName":"张丽伟","id":"acfeab1d-b3c7-4cb3-b283-5db0bc8bc73d","originalAuthorName":"张丽伟"},{"authorName":"陈永生","id":"da7a8c84-6398-46ac-8b03-6d23f8bd3148","originalAuthorName":"陈永生"},{"authorName":"陈庆东","id":"a236d5c2-994e-4bd0-9d18-e9e51a80dfa3","originalAuthorName":"陈庆东"},{"authorName":"卢景霄","id":"5df5b131-4cc7-406c-aaf5-d00b84b7f6df","originalAuthorName":"卢景霄"}],"doi":"","fpage":"116","id":"8f3d87db-c3d9-49f0-ba71-b4abf636c16e","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d89b4b0b-c1db-4b60-a2a5-cffac38e256c","keyword":"RF-PECVD","originalKeyword":"RF-PECVD"},{"id":"20923e6f-5695-48a5-84ee-6148c25e2efc","keyword":"p型微晶硅薄膜","originalKeyword":"p型微晶硅薄膜"},{"id":"3f38cd54-606f-4f29-8baa-5eea4c14cf62","keyword":"暗电导率","originalKeyword":"暗电导率"},{"id":"54d31582-5342-4c3c-a3e6-9beb85ea7123","keyword":"晶化","originalKeyword":"晶化率"}],"language":"zh","publisherId":"cldb200804029","title":"高电导率高晶化p型微晶硅薄膜的制备","volume":"22","year":"2008"},{"abstractinfo":"在前人工作基础上,将电导率与光学碱度联系起来,研究了电渣冶金用含氟渣系电导率的计算方法,建立了常用二元及三元渣系电导率计算模型,计算结果与实测结果吻合良好.电导率计算方法的建立将为电渣冶金用渣系的设计提供指导,具有重要的理论和实际意义.","authors":[{"authorName":"董艳伍","id":"38ea0d74-771f-4e63-af74-b5333fc3b16c","originalAuthorName":"董艳伍"},{"authorName":"姜周华","id":"a6920a77-50fc-4278-91ef-f291ce579ff0","originalAuthorName":"姜周华"},{"authorName":"李花兵","id":"65908d33-360b-4dbb-adb1-402580619956","originalAuthorName":"李花兵"},{"authorName":"邵国强","id":"5a1728ae-8c6a-490b-983a-87d8f0a0b731","originalAuthorName":"邵国强"},{"authorName":"于昂","id":"41299a7b-24ff-4638-9896-d75c29ebaf49","originalAuthorName":"于昂"},{"authorName":"陈瑞","id":"9fed57b9-6e09-443c-8397-a89cacb35e5f","originalAuthorName":"陈瑞"},{"authorName":"宋照伟","id":"f7672590-169a-4775-8040-ee582441d998","originalAuthorName":"宋照伟"}],"doi":"","fpage":"274","id":"a8cbe46f-1dfc-4877-bae9-c49a0138b7ae","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"d871032f-0001-471b-8fee-d645c13a31d3","keyword":"电渣冶金","originalKeyword":"电渣冶金"},{"id":"6ad79098-9b70-46ae-bfbb-5c6ba163ce0d","keyword":"渣系","originalKeyword":"渣系"},{"id":"17c4608e-82b8-4543-bfa3-d4aced2be0b6","keyword":"电导率","originalKeyword":"电导率"},{"id":"da1a9f12-9095-4631-8b72-8acf71ebd817","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"clyyjxb201204008","title":"电渣冶金用含氟渣系电导率计算方法","volume":"11","year":"2012"},{"abstractinfo":"介绍了一种以黑铅硅矿石为主要填料的新型复合材料的电导率正负温度系数特性.分析了黑铅硅石填充量和电导率的关系以及温度变化对复合材料电导率的影响.结果表明,随着黑铅硅石含量的增加,复合材料电导率逐渐增加,在黑铅硅石含量为55%(质量分数)时电导率出现极大值后开始下降.电导率随温度变化在低于140℃时呈现NTC效应,超过后呈现PTC效应.","authors":[{"authorName":"孟德川","id":"9f21a917-0ac6-4568-9f25-d733fc2d53c4","originalAuthorName":"孟德川"},{"authorName":"王宁会","id":"dd842712-f2e8-4dba-8d4e-814123287b0f","originalAuthorName":"王宁会"},{"authorName":"李国锋","id":"57674803-d577-451b-a8cf-a39d18aa8ae3","originalAuthorName":"李国锋"}],"doi":"","fpage":"840","id":"865a8b9d-ce96-4bbc-9b53-29dd61801935","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a0fa7172-401c-4646-ab03-1644bc88b382","keyword":"黑铅硅石","originalKeyword":"黑铅硅石"},{"id":"aaf57ac6-5dc5-4dee-99d1-e0d1b5999eb4","keyword":"电导率","originalKeyword":"电导率"},{"id":"f6cdb850-5501-4178-a43e-61dc11fbe724","keyword":"温度系数效应","originalKeyword":"温度系数效应"}],"language":"zh","publisherId":"gncl201306019","title":"黑铅硅石复合材料的电导率特性研究","volume":"44","year":"2013"}],"totalpage":3955,"totalrecord":39550}