{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过恒压阳极氧化法在HF酸和CrO3的混合电解液中,在纯钛TA1和钛合金TC4表面分别制备了纳米多孔无定型TiO2.研究了TA1和TC4表面无定型TiO2在空气中热处理的组织转变过程.TA1试样表面的纳米多孔TiO2在250℃左右出现锐钛矿相,480℃左右出现金红石相,在600℃左右锐钛矿相向金红石相的转变基本完成,孔结构在600℃左右基本消失;TC4试样表面的纳米多孔TiO2在310℃左右出现锐钛矿相,600℃左右出现金红石相,在680℃左右锐钛相向金红石相的转变基本完成,孔结构在700℃左右基本消失.TC4试样表面的氧化所含合金元素Al和V,对上述结晶转变温度和孔结构存在的最高温度的差别存在重要影响.","authors":[{"authorName":"陶海军","id":"14cd3ba3-f70e-4359-b617-72240732993d","originalAuthorName":"陶海军"},{"authorName":"陶杰","id":"ffb75641-1333-4e87-acff-c6d9d4fec411","originalAuthorName":"陶杰"},{"authorName":"王玲","id":"adb3de19-c77a-42f0-82ca-d8687d831eb6","originalAuthorName":"王玲"},{"authorName":"王炜","id":"9398c472-d67d-498a-90f8-4748bad17c60","originalAuthorName":"王炜"}],"doi":"10.3969/j.issn.1009-6264.2005.05.002","fpage":"5","id":"fc10ad6b-f1fb-416c-b862-b7b865649c0c","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5a86368e-a72c-48c6-9bd8-c8295c3057fd","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"86eb7cbe-a284-4167-83e2-dc5510937b87","keyword":"纳米多孔TiO2","originalKeyword":"纳米多孔TiO2膜"},{"id":"57904d80-cbf1-4528-8f6a-81603d7133f7","keyword":"结晶转变温度","originalKeyword":"结晶转变温度"}],"language":"zh","publisherId":"jsrclxb200505002","title":"纳米多孔TiO2的晶化处理及其热稳定性研究","volume":"26","year":"2005"},{"abstractinfo":"分别在氢氟酸和硫酸两种电解液体系下对纯钛(TA1)试样进行阳极氧化,在钛的表面获得TiO2纳米多孔.利用的颜色的不同来判断的厚度的变化,用FESEM观察了孔的形貌和结构并用XRD测试了TiO2的晶型,进而研究了阳极氧化电压对孔径和多孔晶型的影响并对多孔的形成机理进行了阐述.","authors":[{"authorName":"王炜","id":"f6d71cd6-0bd5-4318-a184-7c78653bce6f","originalAuthorName":"王炜"},{"authorName":"陶杰","id":"9d41f53d-baf9-4b95-9927-eda2661ed80d","originalAuthorName":"陶杰"},{"authorName":"陶海军","id":"4525d1d8-c4bc-45b5-aa6c-fa0ce0237c2e","originalAuthorName":"陶海军"},{"authorName":"王玲","id":"719e9625-f264-47a4-8bc3-39da291462e6","originalAuthorName":"王玲"}],"doi":"","fpage":"2959","id":"a5dd3837-9c23-4b8c-855b-04d17d346124","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a7560662-4019-4b68-9224-01fe1cf4b1aa","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"30fb2aac-0307-4c2e-a35e-20fcaaf04016","keyword":"TiO2多孔","originalKeyword":"TiO2多孔膜"}],"language":"zh","publisherId":"gncl2004z1829","title":"阳极氧化制备TiO2纳米多孔","volume":"35","year":"2004"},{"abstractinfo":"对染料敏化TiO2纳米多孔太阳能电池的结构、原理进行了介绍,对电池中电荷分离、复合的机制和原因进行了说明.分析了TiO2薄膜、染料敏化剂和支持电解质对电池性能的影响.提出了提高电池效率的主要途径.","authors":[{"authorName":"林志东","id":"522ee409-1b48-48c6-b918-31c87d2ed25c","originalAuthorName":"林志东"},{"authorName":"刘黎明","id":"ae76a659-ff7b-49c5-81d0-d559f3feb3e2","originalAuthorName":"刘黎明"},{"authorName":"郭云","id":"4222db3e-ef82-4f7e-8c8c-6adab2532aa9","originalAuthorName":"郭云"},{"authorName":"达道安","id":"c9fbae54-db5d-4d35-a9a5-09a6ae9ff057","originalAuthorName":"达道安"}],"doi":"","fpage":"35","id":"b70e119b-71ca-4d71-8b4d-b2dee5f136ef","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d0bf9683-6c30-4333-9a72-90eb6a101b50","keyword":"染料敏化","originalKeyword":"染料敏化"},{"id":"0503b6b5-435a-4691-b3ea-71e0ccc1213b","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"8a4f5877-c2ce-4c65-b8d9-79e873c5ff99","keyword":"TiO2薄膜","originalKeyword":"TiO2薄膜"},{"id":"604c37bb-9c54-4dc5-8b1a-de7447530b9b","keyword":"纳米晶","originalKeyword":"纳米晶"}],"language":"zh","publisherId":"cldb200110012","title":"染料敏化TiO2纳米多孔太阳能电池","volume":"15","year":"2001"},{"abstractinfo":"利用四辊卧式粉末轧机制备多孔钛板,并通过阳极氧化工艺在轧制多孔钛板上制备TiO2纳米管阵列.采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分别对TiO2纳米管阵列的形貌和物相进行表征,并对TiO2纳米管阵列的热稳定性和生物相容性进行了研究.结果表明,多孔钛板上初步制备的TiO2纳米管阵列为无定形相结构,在不同温度下可转化为锐钛矿型、金红石型或锐钛矿与金红石型的混合物;细胞培养实验表明,经阳极氧化及450℃退火处理后,粉末轧制多孔钛板表面细胞的黏附量比未经处理的多,且细胞发育良好.","authors":[{"authorName":"沈垒","id":"4b80f82f-d56a-4294-8b4f-1c3e8f90996e","originalAuthorName":"沈垒"},{"authorName":"李广忠","id":"33115ae3-dccc-4c18-96c4-933ea6cb020f","originalAuthorName":"李广忠"},{"authorName":"陈刚","id":"f4318740-da86-4bba-96a5-5ea95f27f04d","originalAuthorName":"陈刚"},{"authorName":"赵少阳","id":"875494d2-dc96-4954-88e8-ce3d03d97ac5","originalAuthorName":"赵少阳"},{"authorName":"李增峰","id":"9e20f823-496b-40b7-a753-fe3c8e19ec6f","originalAuthorName":"李增峰"},{"authorName":"葛渊","id":"fbcbc444-06cb-49f5-b731-da050af8ad7b","originalAuthorName":"葛渊"},{"authorName":"李亚宁","id":"f509d13d-e797-41fd-9d49-e48046706945","originalAuthorName":"李亚宁"}],"doi":"","fpage":"37","id":"c263bedd-4690-42e3-81aa-5a8ebf24e9aa","issue":"1","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"e286dd2f-2ed9-42f7-9e0a-8170514da30d","keyword":"多孔钛板","originalKeyword":"多孔钛板"},{"id":"bc7c026d-bb71-4655-b83c-7be12788515f","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"e8da4ebf-9e42-4aae-b6b5-a866dc5286fb","keyword":"TiO2纳米管阵列","originalKeyword":"TiO2纳米管阵列膜"},{"id":"34e9f3b9-7634-44ea-a3e3-bb67d6fe78c1","keyword":"生物相容性","originalKeyword":"生物相容性"}],"language":"zh","publisherId":"tgyjz201701009","title":"多孔钛板表面TiO2纳米管阵列的制备及表征","volume":"34","year":"2017"},{"abstractinfo":"研究了染料敏化TiO2纳米多孔薄膜电极的制备、表征及其光电转换性质,采用溶胶-凝胶法滚压涂层制备了TiO2纳米多孔薄膜,在无水乙醇中利用薄膜吸附染料2,2'-联吡啶-4,4'-二甲酸合硫氰酸钌进行敏化处理,并利用XPS、AFM、XRD、SEM和可见-紫外分光光度仪对敏化TiO2纳米多孔薄膜进行了表征分析.研究结果表明:薄膜中纳米粒子晶型主要为锐钛矿,粒径在20~30 nm,多孔薄膜的孔径在50~200 nm;染料敏化多孔薄膜表面吸附了一个单分子层的染料分子,敏化薄膜对可见光有很强的吸收作用,用此薄膜制作的太阳能电池具有较高的光电转化效率,电池效率达到2%,这种薄膜电极改进后可用于制作敏化太阳能电池的光阳极.","authors":[{"authorName":"林志东","id":"d81af6cc-d34c-45e3-832c-ee6a6237a5f3","originalAuthorName":"林志东"},{"authorName":"刘黎明","id":"475694e4-190d-49d8-bab3-0e0a7300a073","originalAuthorName":"刘黎明"},{"authorName":"郭云","id":"00f4a896-7ad9-4c72-a191-78dae320c5e0","originalAuthorName":"郭云"},{"authorName":"熊玉卿","id":"4dd60c1a-672f-4a5e-934c-f53b5110e125","originalAuthorName":"熊玉卿"},{"authorName":"达道安","id":"18c8996c-1c92-4deb-9eef-71e123bea97f","originalAuthorName":"达道安"}],"doi":"10.3969/j.issn.1005-0299.2003.01.014","fpage":"64","id":"70d81379-8e6b-4880-a78b-cb65c8437b8f","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"935f15f1-0bd3-4c65-9a67-0e724b947eb1","keyword":"TiO2纳米晶","originalKeyword":"TiO2纳米晶"},{"id":"2e52c5af-7e5c-44d3-abb4-60abc2f74655","keyword":"染料敏化","originalKeyword":"染料敏化"},{"id":"12abaf5f-54ba-4e2f-88d5-a444b9921e39","keyword":"多孔薄膜","originalKeyword":"多孔薄膜"},{"id":"59eb7ad4-6726-42d0-afa6-41e810900c17","keyword":"光电转化","originalKeyword":"光电转化"}],"language":"zh","publisherId":"clkxygy200301014","title":"敏化TiO2纳米多孔电极的制备与表征","volume":"11","year":"2003"},{"abstractinfo":"通过对TiO2多孔阳极氧化制备工艺的研究,提出了其成机理.实验以硫酸为电解液,以纯钛(TA1)为阳极,铜片为阴极,采用了恒压和恒流2种阳极氧化方式,在纯钛的表面获得TiO2多孔.用FESEM观察其孔径分布在100 nm~200 nm之间,并且随着阳极氧化电压和电流密度的增加,多孔的孔径有增大的趋势.最后,讨论了在硫酸电解液中TiO2多孔的形成机制.","authors":[{"authorName":"王炜","id":"0e94c00a-9170-4314-9dea-e1e71df401f2","originalAuthorName":"王炜"},{"authorName":"陶杰","id":"68cf96ab-dd87-464a-b0d1-385702d7171f","originalAuthorName":"陶杰"},{"authorName":"章伟伟","id":"5fdb1f1a-b244-442a-8c99-2827d256eb3f","originalAuthorName":"章伟伟"},{"authorName":"陶海军","id":"1b23e46c-19d4-414b-b44b-210b2c20725b","originalAuthorName":"陶海军"},{"authorName":"王玲","id":"82358ef2-a748-471b-acd6-64ed6e352c72","originalAuthorName":"王玲"}],"doi":"10.3969/j.issn.1009-9964.2005.02.009","fpage":"30","id":"57fe0e90-b3dc-444d-88cf-b878d3e80fc4","issue":"2","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"8db4c824-58e1-4ee2-8d5c-2c6c49ec70f5","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"2de5ebaf-978c-4e6d-b605-553161072387","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"54d7111c-3472-4eee-9a4a-6277266498cb","keyword":"多孔","originalKeyword":"多孔膜"}],"language":"zh","publisherId":"tgyjz200502009","title":"阳极氧化法制备TiO2多孔","volume":"22","year":"2005"},{"abstractinfo":"在TiO2纳米多孔电极上,修饰了合成的RuL2(SCN)2(L=2,2′-bipyridine-4,4′-dicarboxylic acid)及聚苯胺,用光电化学方法研究了该纳米TiO2/敏化剂多孔电极的光电转换机理,并比较了两类敏化复合电极的光电转换效能.用染料或聚苯胺修饰纳米多孔电极后,可使该复合电极在可见光区吸收增加,光电流增强,且起始波长红移至>600 nm,从而提高了宽禁带半导体电极的光电转换效率.","authors":[{"authorName":"柳闽生","id":"42bacdc8-2b8b-466a-b8c6-833ec9380325","originalAuthorName":"柳闽生"},{"authorName":"詹寿发","id":"89b3e1a4-778c-4ef7-bca6-945653ee37b2","originalAuthorName":"詹寿发"},{"authorName":"帅敏","id":"64dd1d73-996e-4c36-ba52-209790a9c55c","originalAuthorName":"帅敏"},{"authorName":"严晓华","id":"cc6df0dd-fb3d-4f2e-b558-097a1ea9ebbb","originalAuthorName":"严晓华"},{"authorName":"蔡生民","id":"4dfc993d-8ee7-4ad4-a337-eef3249d66a4","originalAuthorName":"蔡生民"},{"authorName":"郝彦忠","id":"baf76675-acc4-4b6f-8bf7-1169d50ff371","originalAuthorName":"郝彦忠"}],"doi":"","fpage":"172","id":"027e9b2c-42ff-4100-b43b-6848ee2a1708","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"37c3da79-9880-4b12-a2d0-40c6a2a12c17","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"434dfabf-99a5-46c6-ac8d-5150083f449e","keyword":"染料","originalKeyword":"染料"},{"id":"ed9c15fe-85df-423e-99bc-11a9e3fc2ac2","keyword":"TiO2/ 敏化多孔复合电极","originalKeyword":"TiO2/ 敏化多孔膜复合电极"},{"id":"06fac4e1-8501-4085-8281-9d27d598061d","keyword":"光电化学","originalKeyword":"光电化学"}],"language":"zh","publisherId":"gfzclkxygc200305045","title":"敏化剂修饰纳米TiO2多孔电极的光电化学行为","volume":"19","year":"2003"},{"abstractinfo":"采用原位水解法,以钛酸四丁酯为前驱体,研究了纳米TiO2多孔陶瓷支撑体烧结过程的影响.结果表明,以钛酸四丁酯为前驱体,采用原位水解法可以将纳米TiO2与大粒径的氧化铝颗粒均匀混合,起到良好的助烧结作用;预烧温度在一定程度上起到调节纳米TiO2添加量的作用并影响支撑体的各项性能.当预烧温度为1300℃,纳米TiO2添加量为0.4wt%时,支撑体经1650℃煅烧2h后,支撑体内部的细颗粒迁移至粗颗粒颈部而基本消失,一定程度上提高支撑体的抗折强度.随着保温时间延长,支撑体的抗折强度不断提高,孔径逐渐增大.但是,较多量的纳米TiO2存在于支撑体内部,起不到良好的助烧结作用.","authors":[{"authorName":"杨玉龙","id":"8fbeed9e-5643-4113-88d3-3f28eab4ad97","originalAuthorName":"杨玉龙"},{"authorName":"周健儿","id":"065bcac5-9533-4150-815e-527727451800","originalAuthorName":"周健儿"},{"authorName":"汪永清","id":"cdbe39fd-1318-4a41-ab8c-6576aac13fe9","originalAuthorName":"汪永清"},{"authorName":"常启兵","id":"8e583898-c72a-44e4-8a6b-b32d41bab38a","originalAuthorName":"常启兵"},{"authorName":"杨柯","id":"731581cc-1cfb-4fc8-88d3-e76fb9b994ba","originalAuthorName":"杨柯"}],"doi":"","fpage":"2841","id":"04bc6395-7366-4834-a290-426bff5235a2","issue":"10","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e14f4c7b-bbb5-4e36-997a-58e58bf17fa4","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"9f79401c-6eb2-4713-bd9a-dcad660a06be","keyword":"陶瓷","originalKeyword":"陶瓷膜"},{"id":"dc262660-bd9a-4979-acb8-afcdc58b9d72","keyword":"原位水解","originalKeyword":"原位水解"},{"id":"6e6a3290-88a9-4cde-a8c7-38085352018c","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"d6669b1d-089e-4166-a478-09e121e49cda","keyword":"烧结过程","originalKeyword":"烧结过程"}],"language":"zh","publisherId":"rgjtxb98201510036","title":"纳米TiO2对氧化铝质多孔陶瓷支撑体烧结过程的影响","volume":"44","year":"2015"},{"abstractinfo":"采用“粉末刮涂”与“化学分散”相结合的方法制备了用于染料敏化太阳电池光阳极的纳米多孔TiO2, 解决了传统工艺中TiO2浆料难于制备和保存等问题, 同时可对层微结构进行精确调控. 采用X射线衍射、扫描电镜、透射电镜等表征所得层的晶体结构、表面和断面形貌; 采用透过光谱考察了涂覆次数、退火温度、汞溴红敏化对TiO2光学性质的影响, 并以汞溴红敏化TiO2为光阳极制作了染料敏化太阳电池原型器件. 结果表明, 采用以稀硝酸为分散剂、低分子量聚乙二醇为结构调控剂的化学分散技术可以制得满足染料电池要求的TiO2. 所得层致密均匀, 无孔洞、缺陷以及分层现象, 在纳米尺度表现出典型的纳米多孔结构特征. 浆料涂覆次数、退火温度、汞溴红吸附对纳米多孔层的光学透过率影响显著. 采用汞溴红敏化TiO2光阳极制作的染料电池原型器件具有较强的光电响应, 经12~15次涂覆、500℃退火工艺制得的层显示出较优的电池性能(Voc~430mV, Isc~150~215μA).","authors":[{"authorName":"高相东","id":"e8370dc3-ac22-4c0d-a736-bc3b5d80d070","originalAuthorName":"高相东"},{"authorName":"李效民","id":"2d6ef78b-3933-4148-b599-f15ff475beed","originalAuthorName":"李效民"},{"authorName":"于伟东","id":"4baef257-8821-44d4-b624-0d7bc6c4c9c2","originalAuthorName":"于伟东"},{"authorName":"邱继军","id":"0a95a848-9de6-4495-8fa1-1ad44e37b723","originalAuthorName":"邱继军"},{"authorName":"甘小燕","id":"57727a5c-7379-4383-b71e-1d19fa3f8394","originalAuthorName":"甘小燕"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.01079","fpage":"1079","id":"99bbdce3-7bd2-4bf9-b2c6-93235e2716ab","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9ab63850-7e21-435a-a76e-cb36bd755a40","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"bab46f5a-0155-449c-bbde-97b06eefb1e1","keyword":" nanoporous","originalKeyword":" nanoporous"},{"id":"0a264672-4ed8-4000-8ed0-3a4e0e89e15c","keyword":" thick film","originalKeyword":" thick film"},{"id":"9bd48643-6154-4664-bcff-e442b6732c8f","keyword":" merbromin","originalKeyword":" merbromin"},{"id":"532c654a-8833-4599-a5f3-7f717d5c455a","keyword":" dye-sensitized solar cell","originalKeyword":" dye-sensitized solar cell"}],"language":"zh","publisherId":"1000-324X_2007_6_27","title":"纳米多孔TiO2的制备及其汞溴红敏化光电化学性能","volume":"22","year":"2007"},{"abstractinfo":"采用\"粉末刮涂\"与\"化学分散\"相结合的方法制备了用于染料敏化太阳电池光阳极的纳米多孔TiO2,解决了传统工艺中TiO2浆料难于制备和保存等问题,同时可对层微结构进行精确调控.采用X射线衍射、扫描电镜、透射电镜等表征所得层的晶体结构、表面和断面形貌;采用透过光谱考察了涂覆次数、退火温度、汞溴红敏化对TiO2光学性质的影响,并以汞溴红敏化TiO2为光阳极制作了染料敏化太阳电池原型器件.结果表明,采用以稀硝酸为分散剂、低分子量聚乙二醇为结构调控剂的化学分散技术可以制得满足染料电池要求的TiO2.所得层致密均匀,无孔洞、缺陷以及分层现象,在纳米尺度表现出典型的纳米多孔结构特征.浆料涂覆次数、退火温度、汞溴红吸附对纳米多孔层的光学透过率影响显著.采用汞溴红敏化TiO2光阳极制作的染料电池原型器件具有较强的光电响应,经12~15次涂覆、500℃退火工艺制得的层显示出较优的电池性能(Voc~430mV,Isc~150~215μA).","authors":[{"authorName":"高相东","id":"22f01c15-c7a4-4f9b-9648-cd6c56a8cba9","originalAuthorName":"高相东"},{"authorName":"李效民","id":"3e55b26c-51d2-4f87-ba20-18d85f3fb374","originalAuthorName":"李效民"},{"authorName":"于伟东","id":"6e28eeca-d573-4938-81e0-71f01c40c2ec","originalAuthorName":"于伟东"},{"authorName":"邱继军","id":"bd26c6ce-5f7c-4ab4-96b9-295da39dba12","originalAuthorName":"邱继军"},{"authorName":"甘小燕","id":"045fb783-bb43-486a-97ff-dda22b36448d","originalAuthorName":"甘小燕"}],"doi":"10.3321/j.issn:1000-324x.2007.06.012","fpage":"1079","id":"0a537bcc-bf3e-4884-9e91-91f44a1b3c23","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"145184c4-b9b3-4fd0-a6d3-407e2cedd7d3","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"64d74326-a0c5-4717-964a-0e253248dc8b","keyword":"纳米多孔","originalKeyword":"纳米多孔"},{"id":"ba9e775e-ff32-480c-a9ca-8437658dd4f3","keyword":"厚","originalKeyword":"厚膜"},{"id":"52d5a949-d83f-40d0-8a51-353629505f92","keyword":"汞溴红","originalKeyword":"汞溴红"},{"id":"207ed7d3-c081-4c3e-beb5-cfb173e1694d","keyword":"染料敏化太阳电池","originalKeyword":"染料敏化太阳电池"}],"language":"zh","publisherId":"wjclxb200706012","title":"纳米多孔TiO2的制备及其汞溴红敏化光电化学性能","volume":"22","year":"2007"}],"totalpage":10355,"totalrecord":103544}