{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以粉煤灰、城市污泥为主要原料,研究了膨润土的添加量对多孔陶瓷的抗折强度、气孔率、体积密度、线收缩率等性能的影响.结果表明随着膨润土掺量的增加,样品的抗折强度和线收缩率增大,但是显气孔率和吸水率降低;膨润土的掺量对样品的孔结构分布和形貌也有明显影响.","authors":[{"authorName":"张长森","id":"34ce9ba3-4eaa-4ca4-ba0f-80ad2402f010","originalAuthorName":"张长森"},{"authorName":"徐鹏","id":"108b6673-1876-48bf-8daf-971ac9a8c6c3","originalAuthorName":"徐鹏"},{"authorName":"","id":"d154b489-fb51-4ddc-bc22-2ea604e508d3","originalAuthorName":"冯厚坤"},{"authorName":"季佩伟","id":"2ad5b001-7143-4ab4-9c61-a7fa55c5c5ae","originalAuthorName":"季佩伟"}],"doi":"","fpage":"2585","id":"c284f9d0-3124-41b6-82c4-c169ebb3d787","issue":"9","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"9c594a03-bfcd-4ed0-81cf-21376dcd588b","keyword":"膨润土","originalKeyword":"膨润土"},{"id":"e710a5fe-c357-416a-9847-7826f75dbe7f","keyword":"粉煤灰","originalKeyword":"粉煤灰"},{"id":"1485c299-0e63-4eeb-8467-b9dff575b742","keyword":"城市污泥","originalKeyword":"城市污泥"},{"id":"d0293b51-4ed2-4b5c-9a98-4117d6c6f9b1","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"}],"language":"zh","publisherId":"gsytb201509030","title":"膨润土对粉煤灰-城市污泥多孔陶瓷性能的影响","volume":"34","year":"2015"},{"abstractinfo":"为了提高工业废弃物的综合利用效率,以粉煤灰和城市污泥为主要原料,利用添加造孔剂法制备了多孔陶瓷.利用XRD、SEM表征了陶瓷的晶相和显微结构,并研究了粉煤灰和城市污泥的配比对多孔陶瓷显气孔率、抗折强度等性能的影响.结果表明,当粉煤灰和城市污泥的配比在1∶1~3∶1之间可制备出性能优良的多孔陶瓷;当配比为3∶2时,可制得显气孔率为41.91%、抗折强度为10.06MPa、体积密度为1.32g/cm3的多孔陶瓷材料.","authors":[{"authorName":"","id":"e1548367-1d22-417b-aa00-f3b94ce3ab9d","originalAuthorName":"冯厚坤"},{"authorName":"张长森","id":"7be3a51e-fa6f-44d7-8604-a2d3f4438b77","originalAuthorName":"张长森"},{"authorName":"张建利","id":"bc8c5376-4f82-45c7-8b28-b93ae3713ebe","originalAuthorName":"张建利"},{"authorName":"桢哲","id":"2bb5df75-730d-4d4e-ab45-c6855f41b4b7","originalAuthorName":"冯桢哲"},{"authorName":"周志超","id":"cfae3d8f-ff72-4327-9639-ebbea9dabc26","originalAuthorName":"周志超"},{"authorName":"宦梦晨","id":"bc328657-b41c-4082-bf95-3e9fa61c7b88","originalAuthorName":"宦梦晨"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.05.017","fpage":"767","id":"3e7a7b40-d958-48e6-8121-49f6dea75d75","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"73aa71b6-7708-459a-bb0e-93e78e7c1cd8","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"4e248264-ddee-47f0-9be9-51652146a532","keyword":"粉煤灰","originalKeyword":"粉煤灰"},{"id":"c5239842-d5e7-449f-b132-c8397dca15be","keyword":"城市污泥","originalKeyword":"城市污泥"}],"language":"zh","publisherId":"clkxygc201605017","title":"粉煤灰-城市污泥基多孔陶瓷材料的制备及性能","volume":"34","year":"2016"},{"abstractinfo":"对PMI泡沫夹层结构整流罩卡门锥段成型技术进行了研究,通过对玻璃钢面板及其泡沫夹层结构性能、面板成型、泡沫热成形、泡沫拼接、玻璃钢泡沫夹层结构成型及无损检测等技术研究,确定了玻璃钢外面板、预先固化,然后与泡沫等复合组装,最后铺覆内面板,整体进罐固化的成型工艺.结果表明,玻璃钢面板纵、横向拉伸强度为602、593MPa,模量为26.0、27.2 GPa,满足设计强度≥350MPa、模量≥25GPa的要求;玻璃钢/PMI泡沫夹层结构泡沫密度为(110±10)kg/m3,厚度28mm,纵、横向侧压强度为32.9、30.5MPa、模量为2.31、2.38GPa,满足设计指标侧压强度≥25MPa、模量≥2.0GPa的要求,采用玻璃钢/PMI 泡沫夹层结构分步固化成型工艺研制的首件新型号整流罩卡门锥段,满足设计使用要求.","authors":[{"authorName":"赵锐霞","id":"6d0b970d-2e9d-4c82-a1fa-3158a003ccda","originalAuthorName":"赵锐霞"},{"authorName":"尹亮","id":"922fc883-6865-4df3-8393-3eb39221466c","originalAuthorName":"尹亮"},{"authorName":"潘玲英","id":"c65837a1-503f-4cfd-8773-4d5d7a5ed0c9","originalAuthorName":"潘玲英"}],"doi":"10.3969/j.issn.1007-2330.2012.04.014","fpage":"58","id":"a73bd1ed-8b1a-4faf-aaa8-43f7882b4829","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b4460ffb-fdfa-41e7-bfa6-371091ce4719","keyword":"泡沫夹层结构","originalKeyword":"泡沫夹层结构"},{"id":"6144557c-b4d4-441d-b35e-df3eea9ac029","keyword":"卡门锥段","originalKeyword":"冯卡门锥段"},{"id":"12578f5e-24e0-4ce5-9465-6b28d57cf2dd","keyword":"成型技术","originalKeyword":"成型技术"}],"language":"zh","publisherId":"yhclgy201204014","title":"PMI 泡沫夹层结构整流罩卡门锥段成型技术研究","volume":"42","year":"2012"},{"abstractinfo":"为查明新疆巴里-伊吾盆地地下水水化学特征及其成因,采用数理统计、Piper三线图、Gibbs图、离子比例系数等方法对研究区2011年9月的75组地下水水样测试结果进行分析.研究结果表明,潜水以HCO3和SO4型水为主,承压水以SO4型水为主,两者都是矿化度中等、硬度中等的弱碱性水;Gibbs图表明,研究区潜水水化学成分主要受蒸发浓缩和岩石风化双重作用的影响,承压水补给水源的水化学成分主要受蒸发浓缩作用影响;离子比例系数法及饱和指数表明潜水和承压水中离子主要来自岩盐、硫酸盐、硅酸盐的风化溶解.此外,(Na+-Cl-)与(Ca2+ +Mg2+)-(SO42-+HCO3-)之间的比值关系表明阳离子交换作用也是地下水中化学组分形成的重要作用之一.","authors":[{"authorName":"栾风娇","id":"3363f2cd-ae16-4697-85c9-998b299522f7","originalAuthorName":"栾风娇"},{"authorName":"周金龙","id":"57475a73-90ad-44f1-bcfa-796451d74198","originalAuthorName":"周金龙"},{"authorName":"贾瑞亮","id":"4c462cd0-59ad-4c96-abdb-3986e0185772","originalAuthorName":"贾瑞亮"},{"authorName":"陆成新","id":"988248b4-8a3c-4cd0-a252-3df08bc2c8dd","originalAuthorName":"陆成新"},{"authorName":"白铭","id":"a06615be-b105-47d3-8433-519c2ead4310","originalAuthorName":"白铭"},{"authorName":"梁红涛","id":"d899a91a-8508-485d-b048-b2830f7b8442","originalAuthorName":"梁红涛"}],"doi":"10.7524/j.issn.0254-6108.2017.02.2016062001","fpage":"380","id":"d62db6b0-f2dc-49fe-8d40-4db5809a5ab5","issue":"2","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"63943dc7-e79a-402d-b85a-6b4fa29655fa","keyword":"水化学特征","originalKeyword":"水化学特征"},{"id":"67ed02e6-a2da-40a8-97c6-4ea4946311e9","keyword":"Gibbs图","originalKeyword":"Gibbs图"},{"id":"5cb17df2-c08b-4dae-939d-da386f2aee6a","keyword":"离子比例系数法","originalKeyword":"离子比例系数法"},{"id":"74c747c0-719e-40bf-9301-d4f68760f417","keyword":"阳离子交换","originalKeyword":"阳离子交换"},{"id":"fc1617e7-8914-48ba-b6b4-3d418e6e9b90","keyword":"饱和指数","originalKeyword":"饱和指数"},{"id":"90fabf31-06f0-4ec0-bfff-142b54702221","keyword":"新疆巴里-伊吾盆地","originalKeyword":"新疆巴里坤-伊吾盆地"}],"language":"zh","publisherId":"hjhx201702021","title":"新疆巴里-伊吾盆地地下水水化学特征及成因","volume":"36","year":"2017"},{"abstractinfo":"通过选择合适的环氧树脂、填料、溶剂等制备了环氧涂层涂料,对比了不同添加量的液态聚硫橡胶对环氧涂层的附着力、柔韧性以及工艺的影响.实验表明:当环氧涂层涂料中添加20%的液态聚硫橡胶时,可在满足涂料施工工艺性要求的前提下,使涂层的附着力、柔韧性以及耐温性能明显提高.","authors":[{"authorName":"高焕方","id":"78f062bd-2b64-41cf-8677-f9b3e1011e0d","originalAuthorName":"高焕方"}],"doi":"10.3969/j.issn.0253-4312.2007.02.005","fpage":"12","id":"5f6e1eb7-7540-46ec-8fe2-14e0d12dc8da","issue":"2","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"9be87ae0-0d90-45d8-b839-c860280a6472","keyword":"环氧涂料","originalKeyword":"环氧涂料"},{"id":"59f860cd-b9ae-4b08-8f5e-36787549699e","keyword":"涂层","originalKeyword":"厚涂层"},{"id":"3de8b3a0-0a0a-494f-8558-24359f156905","keyword":"聚硫橡胶","originalKeyword":"聚硫橡胶"},{"id":"db839926-a777-429f-8a60-3803e2d54748","keyword":"环氧树脂","originalKeyword":"环氧树脂"}],"language":"zh","publisherId":"tlgy200702005","title":"环氧涂层涂料","volume":"37","year":"2007"},{"abstractinfo":"本文介绍了膜导电浆料的配方、工艺流程、主要技术指标和浆料的应用;报道了用于配制Ag基导电浆料的超细银粉的制备方法.","authors":[{"authorName":"张勇","id":"253c6604-1233-4dca-919e-58b864e1d3a6","originalAuthorName":"张勇"}],"doi":"10.3969/j.issn.1004-0676.2001.04.013","fpage":"65","id":"e70843c0-b25b-4eb9-8f53-f40a884afce0","issue":"4","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"a06d6cd7-a106-4cc1-8171-03a0721e63e4","keyword":"膜导电浆料","originalKeyword":"厚膜导电浆料"},{"id":"20da3341-7759-44c8-ba02-41dbcdeb9ccf","keyword":"银粉","originalKeyword":"银粉"}],"language":"zh","publisherId":"gjs200104013","title":"膜导电浆料技术","volume":"22","year":"2001"},{"abstractinfo":"概括介绍了膜金导体浆料。通过改变金粉、粘结剂和有机载体等主要组份的类型和含量,可以制得多种金浆料。①粘结剂类型对膜金导体的性能有较大的影响。根据附着机理分类,膜金导体分为4种主要类型,即玻璃结合型、反应结合型、混合结合型和表面活化结合型。②金粉颗粒的均匀性、单分散性、表面形态及尺寸对浆料的印刷性能和烧结性能影响大。颗粒表面越光滑,对提高印刷性能越有利。光滑的表面吸附有机载体较少,可减少导体膜在烘干—烧结时的收缩率。③有机载体的含量和流变学性能影响金浆料的印刷性能及烘干—烧结时的收缩率。④金浆中添加起合金化作用的元素,可提高导体在铝丝键合体系及Pb-In焊接体系的热老化性能。⑤为适应新的膜工艺技术的需要,研制可光刻的膜金导体浆料和金的金属有机浆料[Au MOC]。","authors":[{"authorName":"李世鸿","id":"2aca460f-5677-423d-b556-515bb5fd92e7","originalAuthorName":"李世鸿"}],"doi":"10.3969/j.issn.1004-0676.2001.01.013","fpage":"57","id":"5252dea8-616a-4d8f-9934-ff3fba22df6a","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"9138bb25-a820-4e4e-8b9b-154e17711602","keyword":"金","originalKeyword":"金"},{"id":"aed10a5a-ea46-4a3d-8795-edd8d1187242","keyword":"浆料","originalKeyword":"浆料"},{"id":"7ae46863-12d6-4022-8a6e-d7aac99a68fc","keyword":"膜导体","originalKeyword":"厚膜导体"}],"language":"zh","publisherId":"gjs200101013","title":"膜金导体浆料","volume":"22","year":"2001"},{"abstractinfo":"","authors":[{"authorName":"吴钰重","id":"9c027aa4-b103-451d-8e97-5f473eac2352","originalAuthorName":"吴钰重"}],"doi":"10.3969/j.issn.1000-6826.2015.05.01","fpage":"1","id":"0506a7f0-4c97-4d66-a669-f34c1c16bd2f","issue":"5","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"d9b0bd3a-6769-4f19-8833-73a919a0d3ad","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jssj201505001","title":"春:勤恳为师路,执着科研心","volume":"","year":"2015"},{"abstractinfo":"通过对典型规格张力减径管头、尾增段壁分布形态的实测与分析,给出了反映增段壁变化规律的数学解析式,为切头、尾量的控制和预报提供了依据.","authors":[{"authorName":"马继仁","id":"8755a870-0ad8-4fcf-937a-12b2d92c8f36","originalAuthorName":"马继仁"},{"authorName":"陈向明","id":"0dee1b2e-6b41-43f4-bc97-fe27cb6db62f","originalAuthorName":"陈向明"},{"authorName":"朱景清","id":"b352d40c-9350-493a-811a-82dbb71a28f9","originalAuthorName":"朱景清"},{"authorName":"张勇钢","id":"55244a5a-53d5-4957-a63f-89f2d9fc9513","originalAuthorName":"张勇钢"},{"authorName":"黄建凯","id":"144fac0a-42b9-4d38-82a6-b9fa3dd211e4","originalAuthorName":"黄建凯"},{"authorName":"李光","id":"7356c006-f290-4271-9f40-c0089c1d8432","originalAuthorName":"李光"}],"doi":"","fpage":"31","id":"49928e85-8970-47de-8e15-f4b92b660c68","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"18187a6d-e176-460c-a23e-ca5684ad7f57","keyword":"壁","originalKeyword":"壁厚"},{"id":"bb2692f7-d985-47fc-8de3-e4504449b232","keyword":"张力减径","originalKeyword":"张力减径"},{"id":"3e6033ef-c51c-409d-8360-c32b14151c0f","keyword":"切头","originalKeyword":"切头"}],"language":"zh","publisherId":"gt199902009","title":"张力减径管端增段壁分布规律的研究","volume":"","year":"1999"},{"abstractinfo":"根据多年的实践经验,总结了中钢板常见探伤缺陷,分析了缺陷的成因,并提出了解决探伤问题的工艺措施.","authors":[{"authorName":"陆岳璋","id":"456f2f04-6ea3-4f8b-adc7-3dfdb3e5002c","originalAuthorName":"陆岳璋"},{"authorName":"熊晓伟","id":"7368ad0e-4c9c-4544-a921-7d934c01e0b0","originalAuthorName":"熊晓伟"}],"doi":"10.3969/j.issn.1000-7571.2004.z2.054","fpage":"650","id":"92cc607f-b30b-477a-8017-889d1f1ae383","issue":"z2","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"05ca5db6-157c-4c2c-9190-a2a474651d61","keyword":"探伤中钢板","originalKeyword":"探伤中厚钢板"},{"id":"935d3b18-815e-440a-be82-256b3d066b5f","keyword":"生产工艺","originalKeyword":"生产工艺"},{"id":"f8ef8423-749e-4ae7-927b-c7f96b7f1f37","keyword":"探伤缺陷","originalKeyword":"探伤缺陷"},{"id":"9386cca8-a700-4879-ad13-bd0edd3752f5","keyword":"压缩比","originalKeyword":"压缩比"},{"id":"6b0834c8-c9c0-4fa9-8e01-4c0b51e89bb6","keyword":"探伤合格率","originalKeyword":"探伤合格率"}],"language":"zh","publisherId":"yjfx2004z2054","title":"中钢板探伤缺陷的研究","volume":"24","year":"2004"}],"totalpage":396,"totalrecord":3960}