{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过化学气相沉积的方法,以乙炔为碳源,天然石墨球为原料,采用不同流化床CVD工艺和不同的反应时间,制备出具有光滑表面或颗粒状热解炭包覆层的核-壳构型改性天然石墨球.改性天然石墨球的核体是具有高度有序石墨结构的天然石墨,而壳体是无序结构的热解炭.与天然石墨球相比,具有核-壳结构的改性天然石墨球的首次库仑效率和循环性能都得到显著改善.尤其是具有颗粒状热解炭包覆层的改性石墨具有优异的循环性能,在41次循环后其放电容量仍为首次容量的84%,这一改善归因于表面沉积的颗粒状热解炭有效地降低了改性天然石墨颗粒之间的接触电阻和增加了接触面积.","authors":[{"authorName":"刘树和","id":"ed5eef55-fc45-42d5-b5bd-09c68799d9ea","originalAuthorName":"刘树和"},{"authorName":"英哲","id":"bd54ac9e-b221-4b89-9bd9-efe7b0ded171","originalAuthorName":"英哲"},{"authorName":"王作明","id":"1dc86095-79e2-4cb6-8d02-11893aa85c66","originalAuthorName":"王作明"},{"authorName":"李峰","id":"07ab42aa-8aaa-4545-ba6f-da762ad1bf6b","originalAuthorName":"李峰"},{"authorName":"白朔","id":"2fec3714-8d11-4756-b9c1-cda4d5446324","originalAuthorName":"白朔"},{"authorName":"闻雷","id":"d3d0853e-0d1a-4024-be06-1cbaa18a465f","originalAuthorName":"闻雷"},{"authorName":"成会明","id":"632f3cc5-9a25-463f-a0b4-05cadf6c2c33","originalAuthorName":"成会明"}],"doi":"","fpage":"30","id":"26bdd1e9-aa2e-44e4-90bd-6b91dbd842d6","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"594b5299-00a5-4f8a-a493-8675853d8401","keyword":"流化床化学气相沉积","originalKeyword":"流化床化学气相沉积"},{"id":"204a23e9-696e-475d-858e-1ece76d569cf","keyword":"核-壳结构","originalKeyword":"核-壳结构"},{"id":"687de7e8-0dec-41d7-8b49-ff683348591d","keyword":"热解炭","originalKeyword":"热解炭"},{"id":"4285d10d-0f19-494f-ab71-91313514260a","keyword":"改性天然石墨","originalKeyword":"改性天然石墨"},{"id":"8349eacb-6013-4288-b297-938209889ab5","keyword":"锂离子二次电池","originalKeyword":"锂离子二次电池"}],"language":"zh","publisherId":"xxtcl200801007","title":"天然石墨球-热解炭核壳结构的制备及电化学性能研究","volume":"23","year":"2008"},{"abstractinfo":"一般致密 SiC材料的制备需要极高的温度,而降低制备温度一直是 SiC 制备领域的重要研究方向。采用流化床化学气相沉积法,在球形二氧化锆陶瓷颗粒上制备了厚度为几十微米的 SiC 包覆层。通过对不同温度SiC包覆层的显微形貌及微观结构变化规律研究,给出了沉积效率变化规律,发现低温产物富硅,而高温产物富碳。对不同氩气含量的实验研究发现,氩气的加入可以促进沉积反应向富碳方向移动,从而可以在显著降低温度的条件下制备出致密 SiC包覆层。综合实验结果给出了流化床化学气相沉积方法在不同温度及氩气浓度条件下制备 SiC的物相分布图。","authors":[{"authorName":"王子梁","id":"232c043b-a406-4208-b821-96fe1c120e5a","originalAuthorName":"王子梁"},{"authorName":"刘荣正","id":"7585d06c-5316-4eba-9367-24b3a8e00628","originalAuthorName":"刘荣正"},{"authorName":"刘马林","id":"21eb2011-8c6a-43bb-b4bd-88ad075dfc7a","originalAuthorName":"刘马林"},{"authorName":"常家兴","id":"7ace4b62-c361-4694-98ca-79d6535917c9","originalAuthorName":"常家兴"},{"authorName":"邵友林","id":"f983844b-58ff-47da-8c63-ed34b8fd92de","originalAuthorName":"邵友林"},{"authorName":"刘兵","id":"41754f46-4b94-4f41-b632-93ed4c57580e","originalAuthorName":"刘兵"},{"authorName":"王永欣","id":"8a6524c4-3006-46cf-b66d-d5a1f6041c6c","originalAuthorName":"王永欣"}],"doi":"10.13801/j.cnki.fhclxb.20151026.002","fpage":"1777","id":"783b140e-0e08-40a1-9f1a-4d59b8432a21","issue":"8","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"60b65210-e8f8-4492-81f3-71f97577d71c","keyword":"SiC","originalKeyword":"SiC"},{"id":"1838eaf6-0a07-497c-9bea-5423341f8120","keyword":"流化床","originalKeyword":"流化床"},{"id":"e5266f80-afed-427d-b0ff-3eec03b0ba28","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"2a702b04-bad4-4e32-bef0-9117bc8d3fe2","keyword":"甲基三氯硅烷","originalKeyword":"甲基三氯硅烷"},{"id":"2f6ebd98-6955-4fe0-aed0-0356e2a5fd98","keyword":"包覆层","originalKeyword":"包覆层"}],"language":"zh","publisherId":"fhclxb201608024","title":"致密SiC包覆层低温流化床化学气相沉积制备及形成机制","volume":"33","year":"2016"},{"abstractinfo":"以Fe-Ni/TiO2为催化剂, 采用流化床化学气相沉积法(FBCVD)在TiO2表面原位生长碳纳米管(CNT), 得到CNT/Fe-Ni/ TiO2复合光催化剂. 通过SEM、XRD、UV-Vis等方法表征其结构和性能, 以亚甲基蓝溶液降解为模型考察其光催化性能. 结果表明: Fe-Ni/TiO2催化剂在FBCVD过程中, 镍主要起到了CNT生长催化活性位的作用; 在生长CNT后的复合光催化剂中, 比例较低的Fe3+主要作为电子俘获剂, 抑制TiO2光生电子空穴的复合; Ni和CNT共同起到将电子迅速地从TiO2中导出, 从而降低光生电子-空穴复合几率的作用. 三者的协同作用显著改善了TiO2的光催化性能. 其中Fe和Ni掺杂量分别为0.25mol%和4.75mol%样品的光催化活性较高, 生长CNT后得到的复合光催化剂对亚甲基蓝的降解效率较纯TiO2提高约70%.","authors":[{"authorName":"马磊","id":"93c83dab-5ed8-4049-bb8c-c8c8cb72fccf","originalAuthorName":"马磊"},{"authorName":"陈爱平","id":"8c821380-4ece-491d-ae8b-c28238d6976c","originalAuthorName":"陈爱平"},{"authorName":"陆金东","id":"d1051c8b-67bc-46d9-9d8e-20ad50ecfaa5","originalAuthorName":"陆金东"},{"authorName":"何洪波","id":"1bfa6b25-3e1f-4fe0-94e8-dcea0a4d7415","originalAuthorName":"何洪波"},{"authorName":"李春忠","id":"3ab04e79-6fb0-41a4-b883-ad1bfc38d935","originalAuthorName":"李春忠"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2012.00033","fpage":"33","id":"e0e4aeeb-38c6-4257-8414-d11fe1c41492","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"a08679d2-bb93-4d52-98cb-136e9f2ff5c5","keyword":"过渡金属","originalKeyword":"过渡金属"},{"id":"3fe7ca11-0f93-45ae-8859-51d41a3097ee","keyword":" TiO2","originalKeyword":" TiO2"},{"id":"a1b32eb9-dc6d-42ab-9c50-9de534720334","keyword":" photocatalysis","originalKeyword":" photocatalysis"},{"id":"abb501de-92e9-46d6-8c57-74f17e56d00e","keyword":" fluidized bed","originalKeyword":" fluidized bed"},{"id":"aec56095-5266-40c3-b14c-90f16b24d9e1","keyword":" CNT","originalKeyword":" CNT"}],"language":"zh","publisherId":"1000-324X_2012_1_3","title":"流化床-化学气相沉积法制备CNT/Fe-Ni/ TiO2及其光催化性能研究","volume":"27","year":"2012"},{"abstractinfo":"以Fe-Ni/TiO2为催化剂,采用流化床化学气相沉积法(FBCVD)在TiO2表面原位生长碳纳米管(CNT),得到CNT/Fe-Ni/TiO2复合光催化剂.通过SEM、XRD、UV-Vis等方法表征其结构和性能,以亚甲基蓝溶液降解为模型考察其光催化性能.结果表明:Fe-Ni/TiO2催化剂在FBCVD过程中,镍主要起到了CNT生长催化活性位的作用;在生长CNT后的复合光催化剂中,比例较低的Fe3+主要作为电子俘获剂,抑制TiO2光生电子空穴的复合;Ni和CNT共同起到将电子迅速地从TiO2中导出,从而降低光生电子-空穴复合几率的作用.三者的协同作用显著改善了TiO2的光催化性能.其中Fe和Ni掺杂量分别为0.25mo1%和4.75mo1%样品的光催化活性较高,生长CNT后得到的复合光催化剂对亚甲基蓝的降解效率较纯TiO2提高约70%.","authors":[{"authorName":"马磊","id":"66c62ac2-a4b3-43ea-81d1-ba5c724fd8d5","originalAuthorName":"马磊"},{"authorName":"陈爱平","id":"328446d3-ac3a-49f2-9f2e-fe4e3f09774e","originalAuthorName":"陈爱平"},{"authorName":"陆金东","id":"f5ecee7d-ae1b-43e8-b3c0-aa3cdc0bb6eb","originalAuthorName":"陆金东"},{"authorName":"何洪波","id":"aa22deb0-7893-4151-a2f7-0be51ac832ac","originalAuthorName":"何洪波"},{"authorName":"李春忠","id":"ca8d2ded-556b-469e-902b-95758bd930cd","originalAuthorName":"李春忠"}],"doi":"10.3724/SP.J.1077.2012.00033","fpage":"33","id":"601cdcca-c173-420f-aed8-74e5c66516a6","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e33c3278-8b3a-4def-bfb8-ee87293584bd","keyword":"过渡金属","originalKeyword":"过渡金属"},{"id":"ba2a571d-d134-4220-b095-ce7ac0b467db","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"ed01254b-dd1c-4b22-97f8-216e67e402a5","keyword":"光催化","originalKeyword":"光催化"},{"id":"e9a1e9bd-847c-49ea-8cb5-9d0afefb70b1","keyword":"流化床","originalKeyword":"流化床"},{"id":"b7bf5b49-b7f6-4f16-88f2-40ea1c62c3c6","keyword":"CNT","originalKeyword":"CNT"}],"language":"zh","publisherId":"wjclxb201201005","title":"流化床-化学气相沉积法制备CNT/Fe-Ni/TiO2及其光催化性能研究","volume":"27","year":"2012"},{"abstractinfo":"基于EMMS模型、耦合双流体模型对内置隔板流化床内气固两相流动规律进行研究,包含流化床内气固两相的速度分布规律、固相颗粒体积分数分布规律、粒径对固相颗粒体积分数分布的影响规律等内容.结果表明:流化床内存在固体颗粒的返混现象,多个隔板的存在增强流化床内的返混现象;局部固相颗粒体积分数较高,表明固体颗粒发生了团聚现象;固相颗粒体积分数呈现出\"上稀下浓\"和,\"核稀边密\"的分布规律,且在高度方向的变化规律呈现出\"S\"曲线;随着颗粒粒径的减小,被气体携带进入高度h=0.1~0.4 m区域的固体颗粒增多.研究结果可为深入理解内置隔板流化床内磁化焙烧过程中气固两相流动规律提供理论指导.","authors":[{"authorName":"潘刚","id":"452f5efe-36f8-42dd-9304-45769901e38a","originalAuthorName":"潘刚"},{"authorName":"范勇","id":"75f60afa-58b5-4035-b48d-caf964ff866b","originalAuthorName":"范勇"},{"authorName":"彭迎彬","id":"84d2a293-1d20-4bf7-a228-6e8d9718ae84","originalAuthorName":"彭迎彬"},{"authorName":"武文斐","id":"80f0eff3-6f2d-4738-928c-4e906d936a66","originalAuthorName":"武文斐"}],"doi":"10.7513/j.issn.1004-7638.2015.06.019","fpage":"101","id":"097ea8f0-e3c9-4a7d-94ce-3271609be253","issue":"6","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"3104257e-c4f2-4f55-9b40-78ec7d0c8c23","keyword":"流化床","originalKeyword":"流化床"},{"id":"47429830-6b32-4097-982e-fb7a86c015a8","keyword":"内置隔板","originalKeyword":"内置隔板"},{"id":"7b8160c4-ec93-452e-ac2c-6b660e465c58","keyword":"流场分布","originalKeyword":"流场分布"},{"id":"490ebf12-161f-4f4b-b0e1-d3e23ec7cf50","keyword":"EMMS模型","originalKeyword":"EMMS模型"},{"id":"f4f2fb9f-7216-43f2-ab92-80d144e4f85b","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gtft201506019","title":"内置隔板流化床气固两相流动数值模拟","volume":"36","year":"2015"},{"abstractinfo":"采用欧拉-欧拉双流体模型,颗粒动理学方法模拟颗粒脉动流动和κ-ε双方程模型模拟气相湍流流动,考虑气固两相间耦合作用,数值模拟湍动流化床内气固两相流动行为,获得颗粒浓度和颗粒速度分布.计算结果表明湍动流化床呈现下部密相区、上部稀相区的颗粒分布特性.在密相区,沿床径向方向颗粒浓度在床中心处低、壁面逐渐增高;在稀相区颗粒浓度分布较均匀.沿轴向方向颗粒浓度呈底部浓度高、顶部浓度低的\"S\"型分布.","authors":[{"authorName":"沈志恒","id":"0885fd37-3725-4747-8adf-bb50140ea632","originalAuthorName":"沈志恒"},{"authorName":"孙巧群","id":"6c89be2b-e85d-432a-9f3e-10268149e058","originalAuthorName":"孙巧群"},{"authorName":"刘国栋","id":"96564ef8-d9c2-4d07-8f7f-41eace92fd9a","originalAuthorName":"刘国栋"},{"authorName":"陆慧林","id":"4e6afda3-c2c4-4e98-9c64-32d8793d97f6","originalAuthorName":"陆慧林"},{"authorName":"丁玉龙","id":"347ffa23-f301-47d0-9a41-d5957a8e1bca","originalAuthorName":"丁玉龙"}],"doi":"","fpage":"968","id":"4d2c1233-edff-4858-bf56-6913e1e16382","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"6fb469f8-6b71-4f4c-bc65-e305e3148053","keyword":"湍动流化床","originalKeyword":"湍动流化床"},{"id":"adff2db2-f5f9-40d3-a397-89f27e63c463","keyword":"欧拉-欧拉双流体模型","originalKeyword":"欧拉-欧拉双流体模型"},{"id":"222a6af1-7d0c-4569-83e0-8ae16f508960","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200706021","title":"湍动流化床内气固两相流动特性的数值模拟","volume":"28","year":"2007"},{"abstractinfo":"超临界水流化床是一种新型的高效生物质气化反应器,其两相流动特性与传统气固流化床有很大差异.本文采用离散颗粒模型(DEM)和欧拉模型耦合的方法,对超临界水流化床和传统气固流化床的两相流动特性进行了对比分析研究.研究结果表明:当表观流速略大于最小流化速度时,传统气固流化床即进入鼓泡流化状态,而超临界水流化床中表观流速大于最小流化速度后床层先均匀膨胀,然后才达到鼓泡流化状态;超临界水流化床的床层压降波动小于传统气固流化床;相同流化数(u/umf)条件下,超临界水流化床具有更高的床层膨胀高度;鼓泡流化状态下,气泡直径随床层高度的上升而增大;相同流化数条件下超临界水流化床的气泡当量直径小于传统气固流化床.","authors":[{"authorName":"郑鹏飞","id":"a009e2b5-bbf5-4315-8369-b679ca6cd267","originalAuthorName":"郑鹏飞"},{"authorName":"吕友军","id":"3d5bbb60-6a59-4b02-9cf3-0f2d6191181c","originalAuthorName":"吕友军"}],"doi":"","fpage":"1091","id":"5e66abd0-d363-4096-b069-48d96cce276b","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4520d3a9-6883-4e83-8e9d-0f44256f0164","keyword":"DEM","originalKeyword":"DEM"},{"id":"f24dbc0f-cd2f-4ddb-86e8-12ca08143429","keyword":"超临界水","originalKeyword":"超临界水"},{"id":"a1e6aca6-9ec4-46ac-a7a2-93b7789151a9","keyword":"流化床","originalKeyword":"流化床"}],"language":"zh","publisherId":"gcrwlxb201306021","title":"超临界水流化床与传统流化床流动特性的对比研究","volume":"34","year":"2013"},{"abstractinfo":"流化床内颗粒自旋转将影响颗粒相的流动特性.本文运用基于颗粒动理学理论的欧拉-欧拉气固多相流模型,考虑颗粒自旋转流动对颗粒碰撞能量交换和耗散的影响,数值模拟流化床内气体颗粒两相流动特性.计算结果表明颗粒的自旋转使得床内更容易形成气泡,颗粒浓度分布变化增大.颗粒自旋转运动将导致床内非均匀结构更明显.","authors":[{"authorName":"王淑彦","id":"257fbdc2-c931-4670-9f7a-84289e042cd4","originalAuthorName":"王淑彦"},{"authorName":"赵云华","id":"a5d36ea2-1b18-4199-bef8-2acc75b8548c","originalAuthorName":"赵云华"},{"authorName":"姜健","id":"c6e3e8c1-eef1-402d-a42a-3141b54b9dea","originalAuthorName":"姜健"},{"authorName":"刘国栋","id":"94e919ef-15c1-48c2-a032-f6107b4ee25a","originalAuthorName":"刘国栋"},{"authorName":"陆慧林","id":"07bf48e3-a9ed-47fa-9dbc-1b1003d6013c","originalAuthorName":"陆慧林"}],"doi":"","fpage":"262","id":"0c139116-3c97-4fa1-aeeb-1313c323668e","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c47293c5-0103-4f27-a776-2d82409c3baf","keyword":"颗粒旋转","originalKeyword":"颗粒旋转"},{"id":"b63fb866-3853-4778-bb7e-d51bc30762f2","keyword":"颗粒动理学","originalKeyword":"颗粒动理学"},{"id":"6884c7f5-f7a7-438b-966b-8ecaf133650c","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200702025","title":"数值模拟颗粒旋转对流化床内气固两相流动特性的影响","volume":"28","year":"2007"},{"abstractinfo":"本文建立了由内径100 mm、高3 m的上升管、两级下降管和两级旋风分离器构成的可视化快速流化床试验系统.采用平均粒径dp=215 μm,颗粒密度ρp=2600 kg/m3,堆积密度ρ’p=1700 kg/m3,最小流化速度umf=0.04 m/s的石英砂,在表观气速Ug=0~5 m/s、静止床高与床径比H0/D=1~4和循环通量Gs=0~120 kg/(m2s)的操作范围内,研究了上升管中静止床高、表观气速和固体循环通量对快速流化床内气固流动结构及其转变的影响,并绘制了流动结构转变图.","authors":[{"authorName":"陈岱琳","id":"c07abc7f-8dd7-4d84-916b-d4bcc55f8670","originalAuthorName":"陈岱琳"},{"authorName":"钟文琪","id":"df1c1c72-9a0b-43d2-97d1-f71f37b98dda","originalAuthorName":"钟文琪"},{"authorName":"邵应娟","id":"3e44bbdc-206c-4ba8-8824-1592ce34ce51","originalAuthorName":"邵应娟"},{"authorName":"耿察民","id":"4c6c4d0c-8180-4697-aec7-4df7465ccef6","originalAuthorName":"耿察民"},{"authorName":"金保昇","id":"4658c217-38bb-41fe-a58f-5fda9fe31ada","originalAuthorName":"金保昇"}],"doi":"","fpage":"2402","id":"a75bf985-a575-459e-94bb-7fb7399d7d5a","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"140f145b-c101-48b7-ba8a-3b646617e641","keyword":"气固两相流","originalKeyword":"气固两相流"},{"id":"b95ddef4-108d-4434-b13f-41bfecd0dd27","keyword":"快速流化床","originalKeyword":"快速流化床"},{"id":"0010d990-83d8-4845-ad86-20db27c0b379","keyword":"快速流态化","originalKeyword":"快速流态化"},{"id":"25a2013f-748f-4e53-a972-20fdb00c96b0","keyword":"流动结构","originalKeyword":"流动结构"}],"language":"zh","publisherId":"gcrwlxb201511020","title":"快速流化床气固流动结构及其转变","volume":"36","year":"2015"},{"abstractinfo":"介绍了钢管用粉末流化床涂覆工艺,并指出了生产中容易出现的问题及解决方法.","authors":[{"authorName":"沈国方","id":"434438c9-de9e-495b-a4ab-f89c2c0df5a1","originalAuthorName":"沈国方"}],"doi":"10.3969/j.issn.0253-4312.2002.06.013","fpage":"33","id":"d1998629-aae3-4fa4-95f7-e586bff90815","issue":"6","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"807a1cb8-e9b2-462f-8478-811cb8cac7e9","keyword":"钢管","originalKeyword":"钢管"},{"id":"0473c921-da24-471f-986d-9f40bbbc6d04","keyword":"流化床","originalKeyword":"流化床"},{"id":"a4e9d5c0-dc53-459d-aebf-a9997801fbf3","keyword":"粉末涂料","originalKeyword":"粉末涂料"}],"language":"zh","publisherId":"tlgy200206013","title":"输水(气)钢管流化床涂覆工艺简介","volume":"32","year":"2002"}],"totalpage":7127,"totalrecord":71264}