{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了优化热轧工艺降低能耗,采用热/力模拟实验技术分析了开轧温度对铌微合金钢多道次高温变形后性能的影响,并通过应力松弛实验对Nb(CN)的应变诱导析出行为进行了研究。结果表明:当开轧温度由1141℃降低为1111℃时,基体中Nb(CN)的析出量明显增加,由于析出相粒子的析出强化作用,试样的硬度和强度相应提高。","authors":[{"authorName":"吴晓瑜","id":"e17eda26-ed54-48e9-8092-908c4f974e4b","originalAuthorName":"吴晓瑜"},{"authorName":"何燕霖","id":"5de95543-b034-46ac-9f65-dc91576047c1","originalAuthorName":"何燕霖"},{"authorName":"林大为","id":"a2487c49-47a1-435f-9daa-5eebfdf5d9db","originalAuthorName":"林大为"},{"authorName":"李麟","id":"09b0f5d0-2dc9-44a2-a834-1f34b0782978","originalAuthorName":"李麟"}],"doi":"","fpage":"159","id":"4929519c-e81f-45ea-9e9e-96a7e004789b","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f924de37-d561-4b27-b4a8-106d9f3a6b66","keyword":"热/力模拟实验技术","originalKeyword":"热/力模拟实验技术"},{"id":"2ebefe27-78e4-4229-ace8-19f41c26050d","keyword":"开轧温度","originalKeyword":"开轧温度"},{"id":"8c169a38-0298-4fa3-9eb4-91a89a66b410","keyword":"应变诱导析出","originalKeyword":"应变诱导析出"}],"language":"zh","publisherId":"jsrclxb201110030","title":"开轧温度对含铌微合金钢粗轧后析出相影响的模拟","volume":"32","year":"2011"},{"abstractinfo":"采用热/力模拟试验机进行高温多道次变形的方法,研究了变形前不同保温温度对两种低碳钢(0.032C-0.25Mn、0.165C-0.38Mn)显微组织和力学性能的影响,旨在合理制定低碳钢的热轧工艺参数和促进低温加热技术的应用.研究结果发现,变形前保温温度的降低对0.032C-0.25Mn钢变形后的组织与性能影响不大,但对于0.165C-0.38Mn钢而言,保温温度的降低会促进针状铁素体的形成,提高钢的硬度和强度,根据再结晶动力学原理分析,这是由于初始奥氏体晶粒尺寸较小造成的.","authors":[{"authorName":"吴晓瑜","id":"29083a6f-f2e0-43e8-9586-00be999c6188","originalAuthorName":"吴晓瑜"},{"authorName":"何燕霖","id":"63610c1e-a872-45ec-974b-ca5ff535fee8","originalAuthorName":"何燕霖"},{"authorName":"陆敏","id":"08921bd1-db95-4996-be8d-00fb29b79f6e","originalAuthorName":"陆敏"},{"authorName":"王海涛","id":"6f947c9f-7b78-482b-a533-11f26d84e912","originalAuthorName":"王海涛"},{"authorName":"林大为","id":"05fd0d9b-b4fc-4780-b37c-40ca0f1d2355","originalAuthorName":"林大为"},{"authorName":"李麟","id":"b3d439d2-eac4-4884-96d6-8cabd465d5ce","originalAuthorName":"李麟"}],"doi":"10.3969/j.issn.1001-7208.2010.04.010","fpage":"38","id":"08ce6afe-896f-47f4-afcc-025b5d91adf0","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"53686d62-f542-4b80-9789-7141c787f319","keyword":"热/力模拟实验技术","originalKeyword":"热/力模拟实验技术"},{"id":"b46cf011-2d2d-43c0-aaec-688e996eec20","keyword":"轧前保温温度","originalKeyword":"轧前保温温度"},{"id":"1596e24c-8b79-4817-a715-bdd7a2e42232","keyword":"低碳钢","originalKeyword":"低碳钢"},{"id":"ecc8ce73-e89c-4878-86e5-b17efe52f511","keyword":"组织与性能","originalKeyword":"组织与性能"}],"language":"zh","publisherId":"shjs201004010","title":"不同轧前保温温度对低碳钢热轧组织与性能的影响","volume":"32","year":"2010"},{"abstractinfo":"利用Gleeble1500热应力应变模拟机研究了铌含量、热变形参数(终轧温度和卷取温度)对相变诱发塑性(TRIP)钢组织和性能的影响。实验结果表明:不含铌实验钢的残余奥氏体量、残余奥氏体相中的碳含量、宏观维氏硬度和抗拉强度与常规低碳硅锰系TRIP钢的水平相当;增加铌含量,残余奥氏体量和残余奥氏体相中的碳含量有所下降,而宏观维氏硬度和抗拉强度提高;铌含量为0014%、终轧温度为780 ℃、卷取温度为400 ℃时,残余奥氏体量、残余奥氏体相中的碳含量与宏观维氏硬度和抗拉强度具有最佳组合。","authors":[{"authorName":"唐正友","id":"4c13d0c1-0b5e-4762-acdc-5abbba84932b","originalAuthorName":"唐正友"},{"authorName":"丁桦","id":"3256be8b-f50b-4f81-8009-df7a53b9d58f","originalAuthorName":"丁桦"},{"authorName":"李龙","id":"c1327c86-fd1c-4c01-ba27-771a8a794c7a","originalAuthorName":"李龙"},{"authorName":"张新","id":"257edcf0-90a5-4cde-90da-dcddf79e3fa0","originalAuthorName":"张新"},{"authorName":"宋丹","id":"6c8c36c4-b7b0-4b4d-b70b-53dd994534ed","originalAuthorName":"宋丹"}],"categoryName":"|","doi":"","fpage":"47","id":"8551ae70-92b1-4593-8059-00dc7193edde","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"791c3e25-c1f8-45f2-8eb1-b41a640019d2","keyword":"TRIP钢;铌含量;终轧温度;卷取温度;残余奥氏体","originalKeyword":"TRIP钢;铌含量;终轧温度;卷取温度;残余奥氏体"}],"language":"zh","publisherId":"1001-0963_2006_11_13","title":"热轧相变诱发塑性钢的热模拟实验","volume":"18","year":"2006"},{"abstractinfo":"利用Gleeble-1500热应力-应变模拟机研究了铌含量、热变形参数(终轧温度和卷取温度)对相变诱发塑性(TRIP)钢组织和性能的影响.实验结果表明:不含铌实验钢的残余奥氏体量、残余奥氏体相中的碳含量、宏观维氏硬度和抗拉强度与常规低碳硅锰系TRIP钢的水平相当;增加铌含量,残余奥氏体量和残余奥氏体相中的碳含量有所下降,而宏观维氏硬度和抗拉强度提高;铌含量为0.014%、终轧温度为780℃、卷取温度为400℃时,残余奥氏体量、残余奥氏体相中的碳含量与宏观维氏硬度和抗拉强度具有最佳组合.","authors":[{"authorName":"唐正友","id":"e38cd96d-b4b3-4201-ba21-b062e74b69d9","originalAuthorName":"唐正友"},{"authorName":"丁桦","id":"1c9401d2-8b29-4424-bced-56eaba9aab91","originalAuthorName":"丁桦"},{"authorName":"李龙","id":"cd80eafd-8456-4e41-9da8-948686e87cb6","originalAuthorName":"李龙"},{"authorName":"张新","id":"f5bcafb3-6fac-4c9b-8c41-fdbde517cb4d","originalAuthorName":"张新"},{"authorName":"宋丹","id":"f8051ffe-feb0-4f52-b870-27c058f8a47c","originalAuthorName":"宋丹"}],"doi":"","fpage":"47","id":"a7595822-97c9-4156-9148-0482a2e0b4ce","issue":"11","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"ac4997eb-8bc8-4019-8ef9-e56a5fc2d312","keyword":"TRIP钢","originalKeyword":"TRIP钢"},{"id":"1f6f1a6f-7ade-4d5e-8d12-54c40e9b0b55","keyword":"铌含量","originalKeyword":"铌含量"},{"id":"0c3de7f4-6f82-4c20-874b-42658f29063e","keyword":"终轧温度","originalKeyword":"终轧温度"},{"id":"3378c6c0-196a-42ab-9d25-8caccbbce0dd","keyword":"卷取温度","originalKeyword":"卷取温度"},{"id":"4836c796-2605-4766-a84b-132e85e40c6b","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"}],"language":"zh","publisherId":"gtyjxb200611012","title":"热轧相变诱发塑性钢的热模拟实验","volume":"18","year":"2006"},{"abstractinfo":"稠油开采主要以注蒸汽热采为主,蒸汽沿井筒流动过程中,井筒散热损失和蒸汽温度、干度等均沿流程变化,对其进行精确计算和分析,对油田提高采收效果具有重要意义.本文对井筒结构和传热过程进行了分析,通过地面模拟实验,实测了隔热管的热损分布,并提出了热损合理分布概念.研究发现,接箍和隔热管外壁存在热桥,受影响的隔热管长度在 0.5 m左右.同时,接箍处热流密度是正常隔热管的3倍以上,是需要研究的重点.按热损合理分布概念提出了三套改进设计方案,并对其进行了对比分析.","authors":[{"authorName":"宋永臣","id":"469dfd1d-6a26-42f0-aa4a-6af0cfebfc1c","originalAuthorName":"宋永臣"},{"authorName":"王志国","id":"ceff17da-3fb6-475e-9531-11a0048adc5a","originalAuthorName":"王志国"},{"authorName":"杨文哲","id":"3e706d4e-003e-4d46-af47-c2f10be21433","originalAuthorName":"杨文哲"},{"authorName":"刘晓燕","id":"e6f6f6d8-f0dc-4814-8ac5-c0ca0ef0e2a0","originalAuthorName":"刘晓燕"}],"doi":"","fpage":"1731","id":"19ddb0f9-c529-4770-b32c-26f02182b487","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2dbe8bfb-34a7-49b4-8b69-971fa1c7e5fd","keyword":"井筒注汽","originalKeyword":"井筒注汽"},{"id":"4eb44e4e-cf25-41c5-8f0b-9209c490c4e5","keyword":"热损","originalKeyword":"热损"},{"id":"169b3e20-047b-4d4a-8a65-f14d8469bf9a","keyword":"模拟实验","originalKeyword":"模拟实验"},{"id":"b31120da-4934-41cd-82bc-230bf0597d8b","keyword":"热桥","originalKeyword":"热桥"},{"id":"f67d7166-cd9e-434b-98c8-0bc1306bd680","keyword":"改进设计","originalKeyword":"改进设计"}],"language":"zh","publisherId":"gcrwlxb201010028","title":"注蒸汽井筒热损模拟实验及改进设计研究","volume":"31","year":"2010"},{"abstractinfo":"介绍两例Gleeble-3500热模拟实验机机械系统故障分析和处理方法,针对机械系统故障现象,根据其控制系统的工作原理进行针对性分析和故障处理.","authors":[{"authorName":"唐军","id":"1983b5a4-5e1b-407c-b11e-a21503cc5b69","originalAuthorName":"唐军"}],"doi":"","fpage":"61","id":"3ea8694b-bc48-4172-aa27-0ec29f53bf54","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"df5bf40b-1bf4-4a16-8812-d2cc38558031","keyword":"Gleeble-3 500","originalKeyword":"Gleeble-3 500"},{"id":"2f734119-2d85-423d-ac48-566b1924eeb7","keyword":"机械系统","originalKeyword":"机械系统"},{"id":"c11fe607-e679-4cc8-930c-85350dd62a52","keyword":"故障分析","originalKeyword":"故障分析"},{"id":"bffbc42b-370b-48a6-9b10-b35416722d13","keyword":"故障处理","originalKeyword":"故障处理"}],"language":"zh","publisherId":"wlcs200805018","title":"Gleeble-3500热模拟实验机机械系统故障分析及处理","volume":"26","year":"2008"},{"abstractinfo":"介绍两例Gleeble3500热模拟实验机机械系统故障分析和处理方法,针对机械系统故障现象,根据其控制系统的工作原理进行针对性分析和故障处理。","authors":[{"authorName":"唐军","id":"206e2f8e-9d74-471d-8668-7cc9f5b85fb7","originalAuthorName":"唐军"}],"categoryName":"|","doi":"","fpage":"61","id":"8745db24-efe6-49ea-b06f-58617ca6d9aa","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"4d4a6666-3a91-49e1-8ed4-fb27843c345a","keyword":"Gleeble3500","originalKeyword":"Gleeble3500"},{"id":"775c9aab-5778-44c4-830c-09497c49ebbd","keyword":"mechanical system","originalKeyword":"mechanical system"},{"id":"7e3bf1c3-9704-4a76-af66-bfb4059da369","keyword":"fault analysis","originalKeyword":"fault analysis"},{"id":"14ef08c1-9167-4f6d-904f-36f8e2a0cb32","keyword":"fault disposal","originalKeyword":"fault disposal"}],"language":"zh","publisherId":"1001-0777_2008_5_14","title":"Gleeble3500热模拟实验机机械系统故障分析及处理","volume":"26","year":"2008"},{"abstractinfo":"采用Gleeble-1500D热模拟试验机进行氩气雾化FGH95合金的热压缩实验,在不同的温度和应变速率下,获得FGH95合金的变形应力应变曲线,根据变形数据,建立FGH95合金的变形本构方程,并基于动态材料模型,绘制合金的热加工图。计算得到氩气雾化FGH95合金的变形激活能Q=695.78 kJ/mol,通过建立的本构方程计算得出的峰值应力与实验值符合较好,平均误差范围约6%;根据热加工图,确定FGH95合金安全的热加工区域如下:1070~1100℃,0.01~0.001 s-1,当温度增加到1100℃以上后,应变速率可以增大到0.5 s-1。","authors":[{"authorName":"王旭青","id":"8ec37c49-d5a8-424b-8d17-ab87daaa4cc5","originalAuthorName":"王旭青"},{"authorName":"张敏聪","id":"f0fce913-009c-4b38-a916-8e1a628216c5","originalAuthorName":"张敏聪"},{"authorName":"罗俊鹏","id":"a3387497-f270-4982-9b48-7fc885718383","originalAuthorName":"罗俊鹏"},{"authorName":"彭子超","id":"892f5226-0e58-4adc-b934-3cffc725150d","originalAuthorName":"彭子超"},{"authorName":"盛俊英","id":"ab9c58c4-8b89-40b0-a750-82f930915f2f","originalAuthorName":"盛俊英"},{"authorName":"言建","id":"b34b2967-74e3-47b5-8df7-e72d291df004","originalAuthorName":"言建"}],"doi":"10.11868/j.issn.1005-5053.2016.6.002","fpage":"9","id":"a17fb61d-c6d5-4e45-8722-6389adcc141c","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"1ae2d35f-f166-4cbc-a747-2642b0c52f48","keyword":"氩气雾化FGH95合金","originalKeyword":"氩气雾化FGH95合金"},{"id":"40f5f6c4-d9eb-4397-b065-776330fd96e5","keyword":"高温变形","originalKeyword":"高温变形"},{"id":"177149c2-668f-4a70-82ec-a02e47bbfbbc","keyword":"本构方程","originalKeyword":"本构方程"},{"id":"901315ef-dae7-45fd-a818-e2d78b01a084","keyword":"热加工图","originalKeyword":"热加工图"}],"language":"zh","publisherId":"hkclxb201606002","title":"氩气雾化FGH95合金的热模拟实验","volume":"36","year":"2016"},{"abstractinfo":"根据管线钢工业生产钙处理工艺,在实验室条件下通过水模拟和热态模拟实验研究优化了钙处理工艺参数.结果表明,当喂线位置在2个透气砖夹角中心线上且在其对面半区距包壁R/2处,喂线深度为0.6H,底吹气量为12m3/h时,熔池均混效果较好.在实际生产中,应根据钢水成分,特别是全铝和酸溶铝的质量分数来确定钙线的喂入量.喂线后钢水软吹5~10min较为合适.","authors":[{"authorName":"闵义","id":"577fe5f9-a9c7-42a1-a464-ba80ed46e18f","originalAuthorName":"闵义"},{"authorName":"王德永","id":"423af420-5f7b-422d-9009-018331023380","originalAuthorName":"王德永"},{"authorName":"刘承军","id":"bdfe8a55-91c0-459b-9c18-2db24f203002","originalAuthorName":"刘承军"},{"authorName":"史培阳","id":"aa8642b9-4bcd-482f-bc87-03478bb5652b","originalAuthorName":"史培阳"},{"authorName":"姜茂发","id":"b38f14a1-09e4-44f1-934c-b3c3c7f300f7","originalAuthorName":"姜茂发"}],"doi":"10.3969/j.issn.1006-9356.2008.07.003","fpage":"10","id":"9b56d998-aa5a-4101-8197-7c3e0814d558","issue":"7","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"c8282e3a-c6d1-4d0e-95d1-ee9d62a96937","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"09602953-984e-41f3-adcc-87e79c8d6e7c","keyword":"钙处理","originalKeyword":"钙处理"},{"id":"68c51ca6-58ea-43c2-8127-68e883ed9127","keyword":"模拟","originalKeyword":"模拟"},{"id":"dab07d40-ebbe-43e1-9ae1-5717e6be1c53","keyword":"参数优化","originalKeyword":"参数优化"}],"language":"zh","publisherId":"zgyj200807003","title":"管线钢钙处理模拟实验研究","volume":"18","year":"2008"},{"abstractinfo":"基于本工作第Ⅰ部分建立的挤压铸造凝固过程热-力耦合数学模型及求解方法,开发了相应的模拟计算软件.基于Gleeble高温力学行为测试数据所得的本构关系,采用开发的软件对不同工艺条件下A356铝合金挤压铸造凝固过程进行了模拟计算,模拟结果与实验结果一致,表明所建立的模型对挤压铸造过程热和力的分析是正确的.","authors":[{"authorName":"朱维","id":"2bf2051a-7a5c-4fd6-b0f6-f214be4da18d","originalAuthorName":"朱维"},{"authorName":"韩志强","id":"db0df9ff-581b-4033-8a37-f8f049d1c82b","originalAuthorName":"韩志强"},{"authorName":"柳百成","id":"81c9903e-7e66-48b0-847b-f894ead76552","originalAuthorName":"柳百成"}],"doi":"10.3321/j.issn:0412-1961.2009.03.018","fpage":"363","id":"5b193b73-394a-4c28-b1f0-e88f9ed790b4","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"39a9d27a-1b5b-4858-87f8-3a4861b8cb7b","keyword":"挤压铸造","originalKeyword":"挤压铸造"},{"id":"f552987e-d7b8-4666-a910-fd865c75d0e7","keyword":"热-力耦合","originalKeyword":"热-力耦合"},{"id":"df98dbf3-5773-4e13-af7e-0d2b6b6205d6","keyword":"模拟计算","originalKeyword":"模拟计算"},{"id":"16324e88-9189-4aa3-9791-74eb476f3918","keyword":"模型验证","originalKeyword":"模型验证"},{"id":"714d402f-7162-440e-9522-70fee73fe4f8","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"jsxb200903018","title":"挤压铸造凝固过程热-力耦合模拟Ⅱ.模拟计算及实验验证","volume":"45","year":"2009"}],"totalpage":9401,"totalrecord":94005}