{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以特级矾土、棕刚玉、电熔白刚玉、镁铝尖晶石、α-Al2 O3微粉、ρ-Al2 O3、铝酸钙水泥为主要原料,添加分散剂和钢纤维等外加剂,研究了加入 Y2 O3对刚玉-尖晶石质中间包挡渣墙高温性能和抗渣性能的影响。结果表明:随着 Y2 O3加入量的增加,试样的高温抗折强度增大,抗渣性能变好,当加入量为2%(w)时其高温强度和抗渣性能均最优。显微结构分析表明:Y2 O3高温下与 Al2 O3反应生成 Y3 Al5 O12高熔点相,活化了晶格,有效提高试样的致密度,Y2 O3活性较大,高温下还能与材料中 SiO2反应形成高温结合液相钇硅酸盐,从而将试样中的尖晶石、Al2 O3等物质紧密结合在一起,使试样变得更加致密,可有效阻挡渣的渗透;随着 Y2 O3的引入,在渣蚀后试样的反应层和渗透层发现大量的片状 CA6保护层,抑制了渣的进一步渗透,同时由于生成 CA6消耗了渣中的 CaO,大大提高了渣的黏度,降低了渣的渗透能力,使渣的渗透逐渐停止。","authors":[{"authorName":"郭钰龙","id":"8898bb2c-3af9-42a0-a40d-49522ef7e35f","originalAuthorName":"郭钰龙"},{"authorName":"梁永和","id":"50734464-5d14-431a-81f0-21ab676e1026","originalAuthorName":"梁永和"},{"authorName":"聂建华","id":"79665d38-ccdb-4392-becb-e21da651413f","originalAuthorName":"聂建华"},{"authorName":"尹玉成","id":"0905641c-6686-4949-8f39-ec5d4ac9ac0c","originalAuthorName":"尹玉成"}],"doi":"10.3969/j.issn.1001-1935.2015.05.008","fpage":"352","id":"7f5b11bb-0d7c-49d2-a72e-a33cafc13a51","issue":"5","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"74e211f6-2857-4dff-8eeb-6050902659e4","keyword":"Y2 O3","originalKeyword":"Y2 O3"},{"id":"3b191fe1-f988-4c87-abed-a55b063905b3","keyword":"刚玉-尖晶石浇注料","originalKeyword":"刚玉-尖晶石浇注料"},{"id":"dd0ceb54-0382-4cb1-b73e-56a0cbee18bc","keyword":"挡渣墙","originalKeyword":"挡渣墙"},{"id":"b4cfbc7b-aaac-43fc-8925-89d3b6d706a4","keyword":"高温强度","originalKeyword":"高温强度"},{"id":"f680716c-2e45-4de4-a6c2-fe59e76701aa","keyword":"抗渣性能","originalKeyword":"抗渣性能"},{"id":"26133330-d30d-4faa-b1e1-5cc005f0364d","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"nhcl201505008","title":"引入 Y2 O3对刚玉-尖晶石中间包挡渣墙高温强度和抗渣性的影响","volume":"","year":"2015"},{"abstractinfo":"目的:采用含颗粒电解液是目前最常用制备具有更佳性能微弧氧化膜层的方法之一,主要研究微弧氧化过程中颗粒掺杂与电源模式的关系。方法在Y2 O3颗粒质量浓度为0~10 g/L的电解液中,分别以单极脉冲和双极脉冲电源模式制备一系列微弧氧化膜层,并从表面形貌、表面元素组成、截面形貌及耐蚀性能等方面对膜层进行综合评价。结果分散在电解液中的颗粒带有负电荷,在微弧氧化过程中发生电泳现象。在单极脉冲电源模式下,颗粒受正电吸引而发生定向迁移,在试样附近聚集并且吸附至表面,从而参与下一步的微弧氧化膜层形成过程。随着电解液中颗粒浓度的提高,分散在微弧氧化膜层表面的Y2 O3颗粒数量增多,膜层表面的Y元素含量增加,膜层变得致密,耐蚀性能因而提高。在双极脉冲电源作用下,由于电场的交替变化,颗粒难以聚集在试样周围,颗粒的掺杂只能通过随机熔融包覆进行,因而参与到微弧氧化过程中的颗粒数量较少。结论颗粒掺杂受电场力影响,在单极脉冲模式下,颗粒的掺杂浓度对膜层的性能影响明显;在双极脉冲电源模式下,负向电流的引入不利于颗粒掺杂至氧化膜层,颗粒的掺杂浓度对膜层的性能影响不明显。","authors":[{"authorName":"欧阳珂宁","id":"f78171eb-0f99-4f5e-9acc-ecc0195b1205","originalAuthorName":"欧阳珂宁"},{"authorName":"赵景茂","id":"844a10dd-f93a-4412-9c60-aa0c8a53ac56","originalAuthorName":"赵景茂"},{"authorName":"谢雄","id":"ceeb533f-80f7-40d4-83f5-ebdd6acc21ba","originalAuthorName":"谢雄"},{"authorName":"付文景","id":"442e45bf-9960-4d24-a7e7-8d862c9ff298","originalAuthorName":"付文景"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.10.001","fpage":"1","id":"36fbf0ed-6e1c-482e-bba6-5c6ffc6c246b","issue":"10","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"e4c856e8-c71d-4336-a7f8-0817d31aec92","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"2cf3b62c-d48d-432b-a374-496e833e8fb6","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"8f38777f-8cab-4fd1-bd22-c0bd058e3924","keyword":"电源模式","originalKeyword":"电源模式"},{"id":"d67baf39-4f08-406b-8adc-c8cd2c2e0e0e","keyword":"电泳","originalKeyword":"电泳"},{"id":"71a4cabe-bf59-4af3-a929-baf61ab54fd0","keyword":"Y2 O3","originalKeyword":"Y2 O3"},{"id":"e655ceda-d47c-4cd7-b852-b6452a980aac","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"bmjs201510001","title":"镁合金微弧氧化过程中电源模式对颗粒掺杂的影响","volume":"","year":"2015"},{"abstractinfo":"为了制备均匀致密的HA -Ti -Y2 O3/ZrO2陶瓷涂层,在正丁醇介质中,以三乙醇胺为添加剂,将羟基磷灰石(HA)与Ti,Y2 O3/ZrO2按一定比例混合电泳沉积在钛基底上,得到了形貌稳定的HA -Ti -Y2 O3/ZrO2生物陶瓷涂层.研究了电场强度,电泳时间,添加剂用量对涂层品质的影响.用扫描电镜(SEM)对热处理后的涂层进行了观察,采用红外光谱仪(FTIR)和X射线仪(XRD)对涂层的形貌、组成及结构进行了表征.结果表明:在正丁醇作分散剂,三乙醇胺添加量为12 mL/L,电场强度30~60 V/cm,HA浓度为10~20 g/L,Ti为4~16 g/L,Y2 O3/ZrO2为6~12 g/L的条件下,可制得形貌较好的HA -Ti -Y2 O3/ZrO2复合陶瓷涂层.","authors":[{"authorName":"倪军","id":"0b90697f-9dbc-4df3-be03-a75a71caf9d4","originalAuthorName":"倪军"},{"authorName":"肖秀峰","id":"94785b14-54f9-45a8-8516-3bd09420740e","originalAuthorName":"肖秀峰"},{"authorName":"刘榕芳","id":"23d1d60f-8fa5-4bda-bbd6-2fb3d3962965","originalAuthorName":"刘榕芳"}],"doi":"10.3969/j.issn.1001-1560.2005.02.003","fpage":"7","id":"c5eeb2ca-7d73-400c-9f05-27b4bfb85d7f","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"facc7ab3-83ae-4ce2-ba40-ca0bfee8ab75","keyword":"电泳沉积","originalKeyword":"电泳沉积"},{"id":"78a18182-8530-4890-b9cb-7d99229b4fdd","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"de08575c-d9e7-440e-a18d-ad3405a453db","keyword":"生物陶瓷涂层","originalKeyword":"生物陶瓷涂层"}],"language":"zh","publisherId":"clbh200502003","title":"电泳沉积HA -Ti -Y2 O3/ZrO2复合涂层的研究","volume":"38","year":"2005"},{"abstractinfo":"为了提高多孔Al2 O3-ZrO2(Y2 O3)陶瓷的强度,以尿素和淀粉为燃料,用低温燃烧法合成活性较高的Al2 O3-ZrO2(Y2 O3)复合粉体,并用此粉体制备了多孔Al2 O3-ZrO2(Y2 O3)陶瓷,研究燃烧前驱体中淀粉的外加量(质量分数分别为0、15%、25%、35%、45%、55%)对多孔陶瓷显气孔率、抗折强度和显微结构的影响。结果表明:与尿素为燃料相比,以尿素和淀粉为燃料能提高复合粉体的烧结活性,有效改善多孔陶瓷的显微结构,提高多孔陶瓷的抗折强度。","authors":[{"authorName":"唐钰栋","id":"2179923c-b3d0-4397-9c9a-9a9d3b3c0265","originalAuthorName":"唐钰栋"},{"authorName":"白佳海","id":"e3f48f4d-b29b-40b6-9d23-147d9ace13a8","originalAuthorName":"白佳海"},{"authorName":"郭红","id":"dd6384dc-16bc-446c-bd6b-2d22e12ffda4","originalAuthorName":"郭红"},{"authorName":"刘安法","id":"65565b7d-4d0f-4da7-8d3c-70fd522e1493","originalAuthorName":"刘安法"}],"doi":"10.3969/j.issn.1001-1935.2014.06.014","fpage":"449","id":"334bfbc9-1f2c-4e47-8404-69b33930d997","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"c30fbf77-b29b-409d-81a6-565638d82751","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"de4f0358-d6f9-4663-b2da-97c540e869c8","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"},{"id":"4f34be49-4049-49f2-801d-b1921fe3e499","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"16c5b46d-141f-4601-a500-cfadad89db54","keyword":"氧化锆","originalKeyword":"氧化锆"},{"id":"df3fa88f-d613-4a23-89b5-6893eeeed17d","keyword":"淀粉","originalKeyword":"淀粉"}],"language":"zh","publisherId":"nhcl201406014","title":"淀粉燃料对多孔Al2 O3-ZrO2(Y2 O3)陶瓷性能的影响","volume":"","year":"2014"},{"abstractinfo":"采用动电位极化曲线,电化学阻抗谱(EIS)和中性盐雾试验(NSS)研究了溶液中加入不同含量纳米Y2 O3对铝合金AA6061-T6表面硅烷膜耐蚀性的影响,采用扫描电镜(SEM)对其形貌进行了观察。结果表明,在1,2-双-三乙氧基硅烷(BTSE)溶液中加入少量纳米Y2 O3可提高硅烷膜在3.5% NaCl溶液中的耐蚀性。硅烷膜对铝合金的保护只起到物理屏障作用。纳米Y2 O3抑制了电化学腐蚀过程中阴极还原反应的发生,但不影响电极反应的动力特征。SEM表明在BTSE硅烷溶液中添加10~20 mg/L的纳米Y2 O3后,硅烷膜表面变得平滑致密。","authors":[{"authorName":"张明明","id":"f90ab5b6-25c0-4870-83ae-5279d47cae61","originalAuthorName":"张明明"},{"authorName":"李文超","id":"c75e6970-65c3-42ef-a7e7-ad257c099546","originalAuthorName":"李文超"},{"authorName":"张圣麟","id":"e1c944ac-dafb-4164-a0ad-bed33ef01da4","originalAuthorName":"张圣麟"}],"doi":"","fpage":"1122","id":"f5f5834c-37a4-4fd6-93f3-5b4e46aac09a","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"d62c9a97-c3be-48ad-b4ea-0194f489ad8e","keyword":"硅烷膜","originalKeyword":"硅烷膜"},{"id":"62df68c8-01b6-4aa0-97a2-6708d9ee7c27","keyword":"纳米Y2 O3","originalKeyword":"纳米Y2 O3"},{"id":"40b216e3-8b38-43fc-b927-0380b9101a8e","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"},{"id":"704cecf2-df39-402e-9f93-2801ae9e5f2e","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"fsyfh201411013","title":"AA6061-T6铝合金表面纳米Y2 O3改性硅烷膜的耐蚀性","volume":"","year":"2014"},{"abstractinfo":"目的:研制一种新型添加纳米Y2 O3的过共晶Fe-Cr-C 堆焊合金,改善堆焊合金粗大的初生M7 C3碳化物,提高堆焊合金的耐磨性。方法采用明弧堆焊的方法制作堆焊合金,用金相电子显微镜对其表面微观组织进行观察,用洛氏硬度计对其表面硬度进行测量,用砂带摩擦磨损试验机对其表面耐磨性进行评价,用扫描电子显微镜对其磨损形貌进行观察。最后,利用错配度理论对M7 C3的细化机理进行分析。结果过共晶Fe-Cr-C堆焊合金由初生M7 C3和共晶组织(共晶M7 C3、奥氏体及部分马氏体)组成。未添加Y2 O3的堆焊合金初生M7 C3比较粗大,其平均尺寸在22μm,硬度为55HRC,磨损量为0.85 mg/mm2。经纳米Y2 O3改性之后,堆焊合金的初生 M7 C3尺寸变小,其平均尺寸为16μm,硬度为57HRC,磨损量减少为0.59 mg/mm2,Y2O3的(001)面与正交 M7C3的(100)面之间的二维错配度为8.59%。结论 Y2 O3可以成为M7 C3的非均质形核核心,从而细化了过共晶Fe-Cr-C 堆焊合金的初生M7 C3碳化物,提高了过共晶Fe-Cr-C堆焊合金表面耐磨性。","authors":[{"authorName":"杨庆祥","id":"fc272354-ddee-4b03-8f29-cc6af1ad02cd","originalAuthorName":"杨庆祥"},{"authorName":"赵斌","id":"3cb15257-b130-4b9d-ac45-7d0f2e86ac3a","originalAuthorName":"赵斌"},{"authorName":"员霄","id":"7cf70f32-0a73-461c-83c8-aa4df25e1d3e","originalAuthorName":"员霄"},{"authorName":"蹤雪梅","id":"645f9b3f-00ac-4f13-a425-a990f475fbc0","originalAuthorName":"蹤雪梅"},{"authorName":"周野飞","id":"f0c68783-0379-4830-85fd-b9c0c648fe32","originalAuthorName":"周野飞"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.04.008","fpage":"42","id":"4cf66a0f-c8d2-4d99-b7d1-f423a67cb7b5","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"091b6b0e-eb48-4d98-8786-e9a50aaa5854","keyword":"纳米Y2 O3","originalKeyword":"纳米Y2 O3"},{"id":"e198e4e5-4db9-437f-9cb6-6f53c0b36d16","keyword":"过共晶Fe-Cr-C堆焊合金","originalKeyword":"过共晶Fe-Cr-C堆焊合金"},{"id":"d42c74b5-8c42-4980-ab55-c92a063a6754","keyword":"M7 C3","originalKeyword":"M7 C3"}],"language":"zh","publisherId":"bmjs201504008","title":"纳米Y2 O3对过共晶Fe-Cr-C堆焊合金表面微观组织与耐磨性的影响","volume":"","year":"2015"},{"abstractinfo":"The valenceofelementyttrium of Y2 O3 Mocathode materialhasbeenstudied by usingther mal weight analysis, X ray diffraction analysis, Scanning electron microscopy and X rayphotoelectronspectrum . It hasbeen provedthatyttrium oxidecan bereduced by molybdenum carbide. Thereaction between powdered Y2 O3 and Mo2 Ccan happen at 1173 , and Y2 O3may bereduced to metallicyttrium . Afterthepowder mixtureof Y2 O3 and Mo2 Cwasheat treated at1873 K, Yttrium existsin two kinds of chemicalstate- yttrium of zero valence and yttrium ofthreevalences.","authors":[{"authorName":"J.S.Wang1","id":"85517f79-6951-4ae0-932a-012057dc420f","originalAuthorName":"J.S.Wang1"},{"authorName":"2) ","id":"9c19f7ef-662d-4479-bae8-4ef5c0af2fa6","originalAuthorName":"2) "},{"authorName":"M.L.Zhou2) ","id":"053af381-015a-4924-95a9-4832a633d414","originalAuthorName":"M.L.Zhou2) "},{"authorName":"J.X.Zhang2) ","id":"3afc7539-89d4-4a98-8375-84821c681d76","originalAuthorName":"J.X.Zhang2) "},{"authorName":"Z.R.Nie2) T.Y.Zuo2) and G.J.Zhang2) 1) State Key Laboratory of Materials Chemistry and Applications","id":"66c66f3b-fd93-457a-be73-f5c00507f621","originalAuthorName":"Z.R.Nie2) T.Y.Zuo2) and G.J.Zhang2) 1) State Key Laboratory of Materials Chemistry and Applications"},{"authorName":"Peking University ","id":"6a73fbda-ae4b-48db-bd0f-1ca6fc4130cc","originalAuthorName":"Peking University "},{"authorName":"Beijing 100871 ","id":"711b8a28-d1da-4b37-8770-43d873455cc9","originalAuthorName":"Beijing 100871 "},{"authorName":"China2) Schoolof Materials Science and Engineering ","id":"22cdcff2-5159-4c48-a596-5e5f34c8e296","originalAuthorName":"China2) Schoolof Materials Science and Engineering "},{"authorName":"Beijing Polytechnic University ","id":"c62c2862-e8f5-4024-8c16-52a5e2ec279d","originalAuthorName":"Beijing Polytechnic University "},{"authorName":"Beijing 100022 ","id":"946c5ba7-d264-4fd7-b358-bd03dd323213","originalAuthorName":"Beijing 100022 "},{"authorName":" China","id":"d5a4eddf-c062-4924-ba59-25e47c54a9b3","originalAuthorName":" China"}],"categoryName":"|","doi":"","fpage":"602","id":"a364645d-56fa-4e80-becf-d2d93464c00f","issue":"4","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"8bffab8d-3541-4f1a-84f4-4092805986ce","keyword":"valence","originalKeyword":"valence"},{"id":"082910bf-688f-4bf7-b87c-f7d40bfdd0ef","keyword":"null","originalKeyword":"null"},{"id":"394acbc5-927c-4463-9e61-6ba2075fabc5","keyword":"null","originalKeyword":"null"},{"id":"a25cd771-c766-4999-a960-85924dd65dfc","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1999_4_1","title":"ASTUDY OF VALENCE OF YTTRIUM IN Y_2O_3 Mo CATHODE","volume":"12","year":"1999"},{"abstractinfo":"研究了NH4HCO3与Y(NO3)3反应形成的Y2(CO3)3沉淀在陈化过程中的结晶生长机制及其晶粒大小控制方法.结果表明:在陈化过程中发生了由无定型沉淀向水菱钇型结晶Y2(CO3)3的相态转变,其外观形貌也相应地由纳米球形颗粒转变为哑铃状、鸟巢状和球状结晶聚集体.首先是晶型核在颗粒表面的形成,随即进入晶体生长阶段,促进无定型沉淀的快速溶解并在晶核表面生长,表现出以沿晶胞c轴方向的一维生长特征,形成针状细小结晶;由于结晶速度快,针状结晶演变为枝状,并相互连生聚集成哑铃型、巢型和球形聚集体.提高陈化温度可以加速相态转变和形貌演变过程,在短时间内获得大颗粒结晶聚集体.据此,提出了通过沉淀结晶过程和条件的控制来合成不同大小和形貌的Y2(CO3)3和Y2O3粒子的基本方法,并分别制备了中心粒径D50在600nm左右和35μm左右的Y2O3产品.","authors":[{"authorName":"朱伟","id":"68d723df-ece3-41b5-ab5c-cce033edbf77","originalAuthorName":"朱伟"},{"authorName":"邱东兴","id":"666b3c17-48e2-4c24-bf6a-732d48dac1dd","originalAuthorName":"邱东兴"},{"authorName":"裴浩宇","id":"eef3b22c-ca73-43d0-a5a6-042dff22ca5c","originalAuthorName":"裴浩宇"},{"authorName":"周雪珍","id":"cdd73ede-d54a-4da3-b0a4-1d2d31ee4aab","originalAuthorName":"周雪珍"},{"authorName":"祝文才","id":"637113d4-d6de-4b5b-a7c2-63e301f6ef72","originalAuthorName":"祝文才"},{"authorName":"李静","id":"3f60f0c0-f758-41d4-b1a7-e98d18991e82","originalAuthorName":"李静"},{"authorName":"刘艳珠","id":"c30ab65d-e2a1-4b62-83ce-bcf6a626ffc1","originalAuthorName":"刘艳珠"},{"authorName":"李东平","id":"439798c1-f1e6-4e16-84c5-278ce4245b87","originalAuthorName":"李东平"},{"authorName":"周新木","id":"80cd8204-6b26-4c65-82da-f358f94136a6","originalAuthorName":"周新木"}],"doi":"10.11785/S1000-4343.20160208","fpage":"180","id":"6bc79501-4015-4f88-854b-382b38eaf831","issue":"2","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"0357ea33-da82-41ca-b61f-54a6b05eb5a8","keyword":"水菱钇型碳酸钇","originalKeyword":"水菱钇型碳酸钇"},{"id":"8efeb3e4-ffe9-4863-bb0d-234bf0f7a5b9","keyword":"结晶生长","originalKeyword":"结晶生长"},{"id":"b57796ec-36e5-4cca-bcb7-e2a54a584651","keyword":"形貌控制","originalKeyword":"形貌控制"},{"id":"6ea1f132-816e-4fa7-b0d3-c56e63e04928","keyword":"纳米及微米尺寸","originalKeyword":"纳米及微米尺寸"}],"language":"zh","publisherId":"zgxtxb201602008","title":"Y2(CO3)3的沉淀结晶过程与晶粒大小控制","volume":"34","year":"2016"},{"abstractinfo":"以硝酸铝为氧化剂,甘氨酸作为还原剂,添加氧化钇作为改性剂,采用燃烧法合成了改性的纳米γ-Al2 O3粉体。研究了改性剂的添加量,煅烧温度,煅烧时间等工艺参数对产物的影响。以甘氨酸作为还原剂,氧化钇和硝酸铝的摩尔比为0.07∶1,煅烧温度950℃,煅烧时间4 h 的条件下制得最佳产物。对产物进行 X 射线衍射分析( XRD)、傅里叶红外光谱仪( FTIR Spectrometer)、扫描电镜分析( SEM)和比表面积分析,结果表明所得产物表面积较大,具有表面弱酸性,作为催化剂载体可以提高其表面的贵金属分散度和催化剂的抗积碳能力。","authors":[{"authorName":"杨雪娇","id":"cfe7b4d2-3c47-4b49-be0c-7fdd41b88398","originalAuthorName":"杨雪娇"},{"authorName":"张瑾","id":"2a4b6aa1-123e-4abb-b4bf-62a6ab7bef90","originalAuthorName":"张瑾"},{"authorName":"崔雪娇","id":"26a7e181-a857-4dd4-ba8f-79d6902aa630","originalAuthorName":"崔雪娇"},{"authorName":"李冬霞","id":"20c5b844-3a4c-4b84-8cea-86e4cc929e08","originalAuthorName":"李冬霞"},{"authorName":"贾涵月","id":"d57e9f8e-f3ae-4e33-acdc-0cb1d3de6c1d","originalAuthorName":"贾涵月"},{"authorName":"储刚","id":"a8d8e5c6-661e-41ac-b6e7-41429c9dd18d","originalAuthorName":"储刚"}],"doi":"","fpage":"143","id":"21df58c6-f5b8-462b-b3fd-80a93451a873","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"5676a277-f725-4c24-8ccd-c7a88ced8787","keyword":"纳米γ-Al2 O3","originalKeyword":"纳米γ-Al2 O3"},{"id":"147a6db6-0225-456c-8ebc-79f2b7a450b1","keyword":"Y改性","originalKeyword":"Y改性"},{"id":"449de245-b2d0-4f42-97be-0447e1640b31","keyword":"燃烧合成法","originalKeyword":"燃烧合成法"}],"language":"zh","publisherId":"rgjtxb98201701025","title":"燃烧法合成Y掺杂改性的γ-Al2 O3及其表征","volume":"46","year":"2017"},{"abstractinfo":"为改善Hastelloy X合金的抗热腐蚀性能,通过化学镀镍法制备了镍包覆Y2 O3颗粒,并以之为弥散强化相,以Hastelloy X合金为基体相,制备了质量分数为5%的镍包覆Y2 O3颗粒弥散强化高温合金,然后在其表面涂覆由75% Na2 SO4和25%NaCl组成的混合盐溶液,在850℃下进行热腐蚀试验,并将其与基体合金、普通Y2 O3增强合金进行对比.结果表明:镍包覆Y2 O3颗粒能更加均匀地弥散于基体中,均匀弥散的Y2 O3颗粒可为Cr2 O3提供形核位置,促进保护性氧化膜Cr2 O3的形成;同时镍包覆Y2 O3颗粒还能提高氧化膜的附着力,阻碍氧化膜剥落,改善基体合金的抗热腐蚀性能.","authors":[{"authorName":"孔涛","id":"fccbb2db-b0ed-418c-b89d-e6e6317df862","originalAuthorName":"孔涛"},{"authorName":"熊惟皓","id":"693fd01c-e94b-4a78-aa88-f4b3bf1590d0","originalAuthorName":"熊惟皓"},{"authorName":"张志力","id":"545d51b0-b7bf-49f7-ad4b-36c6ccb82c59","originalAuthorName":"张志力"},{"authorName":"李小峰","id":"a1631204-fbd3-44a4-8e56-28fa5f737f03","originalAuthorName":"李小峰"}],"doi":"","fpage":"43","id":"4563d9a7-2a41-4618-85b3-4024c9f08b70","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"c5d2699c-f554-4d68-90d3-a43f88222f1e","keyword":"镍包覆Y2O3颗粒","originalKeyword":"镍包覆Y2O3颗粒"},{"id":"b3610735-10c6-4aa8-858b-bd69f8ae63c9","keyword":"弥散强化","originalKeyword":"弥散强化"},{"id":"b1ee83fd-25df-49c9-8020-e52778aea16f","keyword":"热腐蚀","originalKeyword":"热腐蚀"}],"language":"zh","publisherId":"jxgccl201311010","title":"镍包覆Y2O3颗粒弥散强化镍基高温合金的抗热腐蚀性能","volume":"37","year":"2013"}],"totalpage":10523,"totalrecord":105221}