{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":2,"startPagecode":1},"records":[{"abstractinfo":"建立了一种固相分散萃取-超高效液相色谱-串联质谱(QuEChERS-UPLC-MS/MS)同时检测火锅食材中11种喹诺酮类药物的方法 样品用5%甲酸乙腈溶液提取后加入盐析剂分层,提取液中加入C18和PSA填料进行基质分散固相净化,浓缩后经Poroshell 120 EC-C18柱分离,用电喷雾离子源正离子多反应监测(MRM)模式串联质谱进行检测 11种药物在1.0~ 100.0 μg/kg范围内具有较好的线性关系,相关系数均大于0.998.该方法检出限(LOD)为1.8 ~3.1 μg/kg,定量限(LOQ)为6.0~10.3 μg/kg.11种药物的回收率为70.1%~ 100.3%,相对标准偏差(RSD)为2.42% ~ 10.88%.该方法简便快速、灵敏度高、准确度好、使用范围广,可作为火锅食材中11种喹诺酮类药物残留的确证方法.","authors":[{"authorName":"曹鹏","id":"41aac011-9da9-43bd-89f2-93087d54504e","originalAuthorName":"曹鹏"},{"authorName":"牟妍","id":"8e1c83b4-4cde-4371-9a3b-b1b741eab608","originalAuthorName":"牟妍"},{"authorName":"高飞","id":"3bcb104c-f611-4b07-8945-6c3e41920cd3","originalAuthorName":"高飞"},{"authorName":"耿金培","id":"b5ebd8eb-8711-4381-8da0-c5896c5ad8e3","originalAuthorName":"耿金培"},{"authorName":"张禧庆","id":"0bf75323-b9d6-4772-b92a-0724b57aefdd","originalAuthorName":"张禧庆"},{"authorName":"隋涛","id":"c2c3e824-34df-4ab0-b4d1-622c79e96baf","originalAuthorName":"隋涛"},{"authorName":"梁君妮","id":"bf798741-ffca-4816-9235-ab91a857a5e5","originalAuthorName":"梁君妮"},{"authorName":"沙美兰","id":"922316eb-7269-4376-84fe-904455a60081","originalAuthorName":"沙美兰"},{"authorName":"关丽丽","id":"b9d309a2-9dac-4282-b5a3-5636f3e152b3","originalAuthorName":"关丽丽"}],"doi":"10.3724/SP.J.1123.2013.02026","fpage":"862","id":"bdadb968-ce3b-4e27-8d32-12a7a4ace386","issue":"9","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"c8d7191e-b987-4fb9-8665-fd8b01504372","keyword":"分散固相萃取","originalKeyword":"分散固相萃取"},{"id":"cc92036a-aed9-4808-ad95-58a9d7e547b0","keyword":"超高效液相色谱-串联质谱","originalKeyword":"超高效液相色谱-串联质谱"},{"id":"c092dc8f-dead-481c-9515-00edbe8bb2f2","keyword":"喹诺酮类药物","originalKeyword":"喹诺酮类药物"},{"id":"e10c23c0-1c24-4309-af6e-c66857b4364b","keyword":"火锅食材","originalKeyword":"火锅食材"}],"language":"zh","publisherId":"sp201309008","title":"分散固相萃取-超高效液相色谱-串联质谱法同时检测火锅食材中11种喹诺酮类药物","volume":"31","year":"2013"},{"abstractinfo":"以Co、Sb粉体为原料,利用机械合金化(MA)和放电等离子烧结(SPS)法制备SiC/CoSb3复合热电材料.采用X-射线衍射法确定机械合金化粉末和SPS烧结块体的相组成,用透射电子显微镜(TEM)观察粉体形貌和块体的显微结构.在300~800 K范围内测量了复合热电材料的电阻率、塞贝克系数和功率因子,研究了纳米SiC颗粒的添加对复合材料热电性能的影响.研究结果表明,SiC颗粒的引入使复合材料的电阻率降低,功率因子提高.在680 K时0.1 vol% SiC/CoSb3复合材料的功率因子比单相CoSb3热电材料提高了约100μW/m·K2.","authors":[{"authorName":"李丽","id":"e7840d1c-11bf-4b19-a616-98a398b204c0","originalAuthorName":"李丽"},{"authorName":"金松哲","id":"e79adecf-019b-4d2d-b52b-95eafd8c7b43","originalAuthorName":"金松哲"},{"authorName":"李敬锋","id":"eb31bc13-725c-495d-987d-f68d0e5300cf","originalAuthorName":"李敬锋"},{"authorName":"隋涛","id":"1ac87aeb-79a3-480f-9f1b-c3d14e9c5dd0","originalAuthorName":"隋涛"}],"doi":"","fpage":"398","id":"dc462997-2019-4237-bf42-46c199d39800","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6e86d2c9-b689-4a07-baf7-9053edfd12c3","keyword":"热电性能","originalKeyword":"热电性能"},{"id":"dc33f4d3-8ed0-4211-abb5-6a6720c31eb5","keyword":"声子散射","originalKeyword":"声子散射"},{"id":"9bfd9586-bc92-4ff8-8a1d-a0f99bd23124","keyword":"CoSb3","originalKeyword":"CoSb3"},{"id":"29b2c10d-e684-4f99-a895-9822fa46606d","keyword":"SiC颗粒","originalKeyword":"SiC颗粒"}],"language":"zh","publisherId":"xyjsclygc2007z2116","title":"SiC/CoSb3复合热电材料的制备及热电传输特性","volume":"36","year":"2007"},{"abstractinfo":"","authors":[],"doi":"","fpage":"1008","id":"a25e22eb-1c15-4c9d-a0fc-bc91a35bb767","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e43799d0-35b8-4c78-8627-ef8a2f34f80f","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"cuihuaxb200810022","title":"《催化学报》主编林励吾院士和副主编张涛研究员分获中国催化成就奖和中国催化青年奖","volume":"29","year":"2008"},{"abstractinfo":"根据《吴仲华奖励基金章程》(吴奖[2008]01号),经各高等院校、中国工程热物理学会和中国科学院工程热物理研究所认真评选和推荐,吴仲华奖励基金理事会评审并确定授予青年学者戴巍、罗坤、唐桂华“吴仲华优秀青年学者奖”,授予程雪涛等10位同学“吴仲华优秀学生奖”。","authors":[],"doi":"","fpage":"0003","id":"6f0ba2a8-05d9-4d8a-8139-230c2fa7e582","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1d50df37-d3bd-4afd-b0bc-96fcef367f18","keyword":"基金","originalKeyword":"基金"},{"id":"96f9e366-8b92-4e45-a8dd-4cf57f7c7890","keyword":"奖励","originalKeyword":"奖励"},{"id":"ddda9152-b951-4a3a-a74b-df9c31c71fdd","keyword":"评选","originalKeyword":"评选"},{"id":"b457f4f4-07c3-4491-8696-b0fe00c86d52","keyword":"获奖者","originalKeyword":"获奖者"},{"id":"ba4efb8c-78da-4883-9ae3-5a4a6746f396","keyword":"中国科学院","originalKeyword":"中国科学院"},{"id":"5d901c8f-96a3-4df7-bc14-2bcd72c081a4","keyword":"青年学者","originalKeyword":"青年学者"},{"id":"8a8e4fab-befc-419f-acb8-1abf6556d4ea","keyword":"物理研究所","originalKeyword":"物理研究所"},{"id":"d399f276-b272-4e7a-b3e7-28290b5ba79d","keyword":"高等院校","originalKeyword":"高等院校"}],"language":"zh","publisherId":"gcrwlxb201202047","title":"第四届“吴仲华奖励基金”评选出获奖者","volume":"33","year":"2012"},{"abstractinfo":"Parylene薄膜是电子产品包封和器件上不可缺少的组成部分,也是生物传感器上具有很好生物相容性的材料,还是投入应用的防护材料中最优秀的涂层材料之一.简要介绍了Parylene薄膜的优异性能,分析了其存在的主要问题,即表面化学隋性、粘接性能差,表面能有待进一步提高,指出表面改性是改善上述问题的有效途径;综述了国内外对Parylene薄膜表面改性研究的最新进展,并讨论了各改性方法的局限.","authors":[{"authorName":"张立生","id":"ca5da62f-c96d-46d1-beff-af13ac379db8","originalAuthorName":"张立生"},{"authorName":"周元林","id":"8e9675ee-6e2c-4162-adde-847ef5157c96","originalAuthorName":"周元林"},{"authorName":"王恩泽","id":"cbf20e4f-0cba-41e2-b161-6f538c02b8f7","originalAuthorName":"王恩泽"},{"authorName":"刘剑","id":"b71bf70c-9de5-490d-95c6-3772d31d0574","originalAuthorName":"刘剑"}],"doi":"","fpage":"112","id":"c216d328-df52-42c8-8ce8-365285233832","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"56edd8eb-bf23-4bdb-9361-5a9a1e98ad7b","keyword":"涂层","originalKeyword":"涂层"},{"id":"e896745c-f948-4da8-a894-39ecc166b01e","keyword":"Parylene","originalKeyword":"Parylene"},{"id":"c1ebb2d5-6f8d-4c6c-a3c5-6e2477af159b","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"b8556651-9172-404d-81ab-7e53bb352584","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"c1160922-757f-4f25-a7c2-d093c9690d8b","keyword":"表面能","originalKeyword":"表面能"}],"language":"zh","publisherId":"cldb200810027","title":"新型涂层Parylene薄膜表面改性研究进展","volume":"22","year":"2008"},{"abstractinfo":"采用欧拉-欧拉双流体模型,颗粒动理学理论模拟颗粒相流动,采用周涛和李洪钟(1999)的力平衡模型预测纳米颗粒聚团尺寸,对喷动床内纳米颗粒聚团流化过程进行了数值模拟,得到了喷动床内纳米颗粒聚团的流化过程,获得喷射区和环隙区内颗粒相速度和浓度分布.分析了喷动床结构和进口气体速度等对纳米颗粒聚团流化特性的影响.由于纳米颗粒的特殊性质,不易形成喷泉区.适当的喷动床结构和进口气体速度有助于形成稳定喷动.","authors":[{"authorName":"郑建祥","id":"50b0689b-7908-4d6f-8a0e-17675532dafe","originalAuthorName":"郑建祥"},{"authorName":"何玉荣","id":"27712f60-f17b-4557-890b-5c9b0870f13a","originalAuthorName":"何玉荣"},{"authorName":"刘文铁","id":"90f05ea7-09e9-4ce2-b4fa-f2fdb41b1381","originalAuthorName":"刘文铁"},{"authorName":"叶校圳","id":"db26ea94-948b-4730-98d3-b2bd84943b95","originalAuthorName":"叶校圳"},{"authorName":"陆慧林","id":"2aa2f4a9-8ced-4f77-8cbf-c91007e87300","originalAuthorName":"陆慧林"}],"doi":"","fpage":"619","id":"3c8e0deb-d22c-464f-a6e7-81be29fe9951","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4fc3731f-15c7-4e59-9d43-cd6ed829563b","keyword":"固喷动床","originalKeyword":"固喷动床"},{"id":"08f21402-1fb3-4550-98b2-3d3516f90c19","keyword":"纳米颗粒聚团","originalKeyword":"纳米颗粒聚团"},{"id":"a5fe5bab-7785-4763-86e8-46fb6c062b88","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200604025","title":"喷动床内纳米颗粒气固两相流动的数值模拟","volume":"27","year":"2006"},{"abstractinfo":"研究了轮箍钢低倍组织和连铸温度对白点敏感性、断裂韧性的影响.结果表明,连铸温度对白点敏感性有影响,低温涛坯(尾坯)的白点敏感性略高于高温铸坯(头坯).低倍组织对白点敏感性影响显著,柱状晶区的白点敏感性最低,等轴晶区的白点敏感性最高.但是,低倍组织和连铸温度对氢扩散和条件断裂韧性KIQ均没有影响.","authors":[{"authorName":"任学冲","id":"ef7bafd3-bcd3-401a-a70d-5dee909a74d8","originalAuthorName":"任学冲"},{"authorName":"武明","id":"4d60dc27-4e9b-42a5-a4bc-d5bda663b4e2","originalAuthorName":"武明"},{"authorName":"褚武扬","id":"bce69328-9ec3-4671-ada6-a52f2d506b92","originalAuthorName":"褚武扬"},{"authorName":"李金许","id":"7640b439-b128-4bd4-8b93-e03822b42829","originalAuthorName":"李金许"},{"authorName":"乔利杰","id":"435c9ca3-48bb-4ed2-a270-329cac4ec689","originalAuthorName":"乔利杰"},{"authorName":"江波","id":"7da1be6a-e1a9-4143-b7aa-6b38d1075154","originalAuthorName":"江波"},{"authorName":"陈刚","id":"c490c753-bd11-4e8f-955c-860812531d42","originalAuthorName":"陈刚"},{"authorName":"崔银会","id":"2d54e61c-1bfb-41ff-a514-c54620f59c2b","originalAuthorName":"崔银会"}],"doi":"10.3321/j.issn:0412-1961.2007.02.007","fpage":"149","id":"24fd9261-07ee-4907-8763-63175a97d1e1","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3177f3bd-0440-45ce-8ab6-1e9a334d7690","keyword":"轮箍钢","originalKeyword":"轮箍钢"},{"id":"0515a1e0-597a-4d5d-ab5f-6e38110c6d82","keyword":"低倍组织","originalKeyword":"低倍组织"},{"id":"cb6a3a67-d31f-4a56-8e7d-cea82e9cb209","keyword":"连铸温度","originalKeyword":"连铸温度"},{"id":"97c6998e-2927-45ce-9ffd-517622ad79b7","keyword":"氢致开裂","originalKeyword":"氢致开裂"},{"id":"36531323-d50c-42e3-939f-fc8b9226abde","keyword":"白点","originalKeyword":"白点"}],"language":"zh","publisherId":"jsxb200702007","title":"连铸温度和低倍组织对轮箍钢氢致开裂的影响","volume":"43","year":"2007"},{"abstractinfo":"将对聚苯树脂炭化产物的组成和结构进行了分析.元素分析结果表明,炭化温度和气氛对产物的C、H含量都有重要影响.还原性气氛中处理的样品C含量都低,而H含量则都高于相同温度隋性气氛中处理的样品.1 000℃炭化处理的样品中仍都含有一定量的H元素.1 000℃惰性气氛中处理的样品与还原性气氛中处理的样品相比,比表面积降低了84.4%,产物比表面积均随炭化温度升高而下降.光谱分析结果表明,700℃炭化处理的样品已开始形成多苯稠环结构,但体系仍处于无定形碳状态;1 000℃炭化处理的样品则同时出现了众多石墨化特征衍射峰,表现出了有较强的石墨化程度.","authors":[{"authorName":"汪树军","id":"cdf1e372-f925-4023-ad05-952eca91e296","originalAuthorName":"汪树军"}],"doi":"10.3969/j.issn.1000-0518.2001.11.010","fpage":"889","id":"c1039876-7c29-4f6d-bfc4-4a324a9b120a","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"85bd2865-3b6b-4191-8ae2-c3e52ca56769","keyword":"对聚苯","originalKeyword":"对聚苯"},{"id":"610a6456-c692-4668-9353-1e4c1a2c1ac7","keyword":"炭化","originalKeyword":"炭化"},{"id":"1757ff0c-7d4c-49a7-a25b-ebf466f3a870","keyword":"元素含量","originalKeyword":"元素含量"},{"id":"70ea6703-d819-490b-813e-d5f5a4ca9209","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"yyhx200111010","title":"对聚苯树脂炭化产物作为锂离子电池碳电极材料的研究(Ⅰ)树脂炭化产物的组成和结构","volume":"18","year":"2001"},{"abstractinfo":"采用等温压缩试验研究不同原始组织对Ti?5Al?2Sn?2Zr?4Mo?4Cr合金流动应力、应变速率敏感性指数、应变硬化指数和表观变形激活能的影响。结果表明:原始组织为片层组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金具有更高的峰值应力和流动软化效应,当变形温度高于或等于810°C、应变速率为0.1~5.0 s?1时,原始组织为等轴组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金存在初始屈服现象。当应变为0.5~0.7、变形温度较低、应变速率为0.01 s?1时,原始组织为等轴组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金的应变速率敏感性指数值较大,这主要归因于其显微组织演变特征。隋着变形的进行,原始组织为片层组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金发生了α片层弯曲和动态球化现象,这使得其应变硬化指数变化显著。当应变为0.15~0.55时,原始组织为片层组织的Ti?5Al?2Sn?2Zr?4Mo?4Cr合金的表观变形激活能更大。","authors":[{"authorName":"罗皎","id":"c6983021-3c07-42fc-a68e-ada350f867e0","originalAuthorName":"罗皎"},{"authorName":"李莲","id":"f90bc975-7440-40de-b592-0a10afe9707a","originalAuthorName":"李莲"},{"authorName":"李淼泉","id":"51779f1c-9259-46e4-81d6-b5f086319955","originalAuthorName":"李淼泉"}],"doi":"10.1016/S1003-6326(16)64130-4","fpage":"414","id":"493d9d10-203b-4983-92c0-3aad71afc973","issue":"2","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"370f4c66-b6cd-4a8e-a757-41480f9c89bc","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"af2206f8-d8d5-410c-8fa3-f113e8a98ed2","keyword":"等温压缩","originalKeyword":"等温压缩"},{"id":"a3593ce4-5730-4e69-b7ba-1de31c005157","keyword":"流动应力","originalKeyword":"流动应力"},{"id":"6b59a13e-3fc1-4a8e-96f8-d06d8a9a71eb","keyword":"显微组织演变","originalKeyword":"显微组织演变"},{"id":"e24d7e6b-3bc7-4e7a-9dac-20561b920806","keyword":"动态球化","originalKeyword":"动态球化"}],"language":"zh","publisherId":"zgysjsxb-e201602011","title":"热加工过程中2种原始组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金变形行为","volume":"","year":"2016"},{"abstractinfo":"单原子催化剂(SAC)是多相催化领域一个新兴的研究热点,是指催化剂中活性组分完全以孤立的单个原子的形式存在,并通过与载体作用或与第二种金属形成合金得以稳定.相比于纳米/亚纳米催化剂,单原子催化剂具有诸多优势:(1)活性组分达到最大程度分散(100%),可有效提高金属(特别是贵金属)原子利用率;(2)活性位点的组成和结构单一,可避免因活性组分组成和结构不均匀导致的副反应,从而显著提高目标产物的选择性;(3)单原子催化剂兼具高活性、高选择性和可循环使用的优点,有望成为连接均相催化与非均相催化的桥梁.因此,单原子催化剂为在原子尺度上理解催化机理和构效关系提供了一个很好的平台.2011年,中国科学院大连化学物理研究所张涛院士团队首次合成了单原子铂催化剂Pt1/FeOx.该催化剂通过共沉淀法制备,在CO氧化以及PROX反应中展示出优异的催化性能,其TOF值为相应的纳米催化剂3倍之高,在此基础上,该团队随后发展了一系列贵金属单原子催化剂,例如Ir/FeOx,Pd/ZnO,Au/CeO2和Ag-Pd/SiO2.这些催化剂在水气变换反应、乙炔选择性加氢反应、芳香硝基化合物选择加氢等反应中表现出了优异的催化活性及选择性.尤其是在3-硝基苯乙烯选择性加氢反应中,单原子催化剂Pt1/FeOx的TOF值高达1500 h-1,是文献报道最优催化剂的20倍;产物3-氨基苯乙烯的选择性高达99%.在单原子催化剂概念提出的短短几年,它已经成为目前多相催化领域的研究热点,并且发展出许多新的单原子催化剂制备方法.然而,由于单个原子具有较高的表面能,因此目前制备的单原子催化剂负载量往往较低(<0.5 wt%).另一方面,目前单原子催化剂的研究对象主要为贵金属,而非贵金属单原子催化剂却鲜有报道.近日,张涛团队在非贵金属单原子催化剂领域取得新的进展.他们成功制备出了负载量高达3.6 wt%的Co-N-C单原子催化剂,并结合密度泛函理论(DFT)和X-射线吸收精细结构(XAFS)技术首次解析出Co-N-C催化位点的精确结构.Co(Fe)-N-C是一类在电催化领域受到广泛关注的材料,在氧还原反应,析氢反应以及CO2电还原反应中均有良好的催化性能,被认为是一种最有希望取代商业Pt/C电极的非贵金属催化剂.然而,由于其组成较为复杂,人们对其活性中心的认识存在诸多争议.Co(Fe)-N-C催化剂通常采用高温焙烧法制备,即将金属前驱体,含N,C配体以及碳载体在600-9000℃高温下焙烧,这往往导致催化剂中同时含有不同尺寸的Co(0),CoOx以及CoM,也含有常规表征手段难以发现的Co(Fe)单原子.张涛团队利用Mg(OH)2作为牺牲载体,制备出了完全单原子分散的Co-N-C催化剂(图1(a)).作者通过原子分辨的高角环形暗场-扫描透射电镜(HAADF-STEM),XAFS和DFT计算,首次证明Co-N-C催化活性中心的结构为CON4C8-1-20z.在这种模型中,Co中心在径向方向与4个N配位,轴向有2个弱吸附的氧气分子吸附在Co原子上(图1(b)).与之前报道的贵金属催化剂显著不同的是,在Co-N-C单原子催化剂中,Co含量高达3.6 %.值得称道的是,这种Co-N-C单原子催化剂在芳硝基化合物选择加氢制备偶氮化合物的反应中的催化活性和选择性可媲美贵金属催化剂.使用Co-N-C催化剂,在温和条件下即可实现从芳香硝基化合物一锅法绿色合成偶氮化合物,并且该催化剂具有优异的底物普适性,即使底物含有-C=C,-I,-Br等基团时,也可高效生成相应的偶氮苯.这项工作的另外一个意义在于获得了非常均一的Co-N-C活性位组成和结构,这为利用多种表征手段精确解析结构提供了一个很好的切入点.某种意义上讲,之前文献中报道的含有多种Co物种的Co-N-C催化剂,其活性中心的认定需要重新审视.事实上,Co的配合物作为分子催化剂已经广泛应用于均相催化中;而这项工作中的Co单原子通过与N,C配位而稳定,活性中心类似于均相催化剂中的Co配合物,但却形成了真正的多相催化剂.因此我们可以预测,许多过渡金属均相催化剂有可能通过该工作中的单原子制备策略转化为多相催化剂,从而使单原子催化剂真正成为均相催化和多相催化的桥梁.","authors":[{"authorName":"李灿","id":"5d4eb216-9c10-4bac-a66b-8d4e5684dac7","originalAuthorName":"李灿"}],"doi":"10.1016/S1872-2067(16)62520-2","fpage":"1443","id":"02218a76-3573-44ae-9f48-3ff00574ee3b","issue":"9","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"6944c522-411f-4049-bf57-c1e5733f8b6f","keyword":"单原子催化","originalKeyword":"单原子催化"},{"id":"6038759c-a51d-4de6-babf-0801570bf979","keyword":"Co-N-C","originalKeyword":"Co-N-C"},{"id":"988f2a40-a8bf-4715-b479-0b201217c83e","keyword":"结构鉴定","originalKeyword":"结构鉴定"},{"id":"99509600-153c-4fc8-bf11-c1394092d5c8","keyword":"活性位点","originalKeyword":"活性位点"},{"id":"2e51728e-7c22-452f-98c4-48b2cc68badf","keyword":"选择加氢","originalKeyword":"选择加氢"}],"language":"zh","publisherId":"cuihuaxb201609002","title":"N/C稳定的单原子Co催化剂","volume":"37","year":"2016"}],"totalpage":2,"totalrecord":12}