{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用焊接烟尘收集装置、汉诺威电弧物理特性分析仪和荧光分析仪等对直径1.6 mm金属芯药芯焊丝烟尘化学成分和药粉粒径对发尘量、电弧稳定性的影响进行了研究.结果表明:烟尘中的主要成分为金属及非金属的氧化物,其中铁和锰的氧化物占90%以上;当药粉粒径在120~380μm时,随药粉粒径的减小,焊丝发尘量减少,电弧稳定性变好;当药粉粒径在120~150 μm时,发尘量最少,电弧稳定性最好.","authors":[{"authorName":"郭俊杰","id":"dfac2e1c-05f4-4b46-8fa5-87a569be348a","originalAuthorName":"郭俊杰"},{"authorName":"栗卓新","id":"a1983db0-1c1f-41e3-9c4d-74c810143c94","originalAuthorName":"栗卓新"},{"authorName":"李国栋","id":"6af06775-a4b8-4a6c-aa2c-87f96e358bdb","originalAuthorName":"李国栋"},{"authorName":"苏卯生","id":"3ea64779-e913-4348-802e-4816e5a7dd2c","originalAuthorName":"苏卯生"}],"doi":"","fpage":"23","id":"b7e0743d-f4c4-405a-aade-8ee694dd37ed","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f3493550-8abf-44dd-8e38-5bd55a36ef78","keyword":"金属芯焊丝","originalKeyword":"金属芯焊丝"},{"id":"480e4121-4569-4311-879b-47be7fb24e5f","keyword":"药粉粒径","originalKeyword":"药粉粒径"},{"id":"e000f585-c936-44ee-bf69-41118f372bdc","keyword":"发尘量","originalKeyword":"发尘量"},{"id":"017edc6b-db9c-48b0-9f27-945e3efd5744","keyword":"电弧稳定性","originalKeyword":"电弧稳定性"}],"language":"zh","publisherId":"jxgccl201010006","title":"金属芯药芯焊丝中药粉粒径对发尘量和电弧稳定性的影响","volume":"34","year":"2010"},{"abstractinfo":"自保护药芯焊丝多为高碱性渣系焊接材料,焊接工艺性较差.药芯组分对自保护药芯焊丝的全位置焊接性、电弧稳定性、飞溅性等工艺因素有重要影响.本文分析了Fe2O3、CaCO3、Al-Mg、BaF2及Fe粉等药芯组分对工艺性的影响.研究表明:Fe2 O3、CaCO3、Al-Mg、BaF2及Fe粉的质量分数分别为9%~13%、8%~12% 、10%~20%、5%~10%、40%~ 50%时,工艺性良好.此外,药芯组分的预处理、钢带的清洗以及填充率的控制等加工制造过程对工艺性也有重要的影响,要严格控制各个环节.","authors":[{"authorName":"朱珍彪","id":"bd4b65c7-2970-4007-8f0d-6ae8bb62fd5d","originalAuthorName":"朱珍彪"},{"authorName":"姚润钢","id":"07c0ba2b-f1bd-4b86-8c68-460bac9e649f","originalAuthorName":"姚润钢"}],"doi":"","fpage":"10","id":"80718c68-6afa-4426-b516-cb660561f567","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"fd0ea25b-0aab-4d4c-91b8-36acb05b83a9","keyword":"自保护药芯焊丝","originalKeyword":"自保护药芯焊丝"},{"id":"33a586ca-4a1e-4a27-8ff4-ba80537ec33f","keyword":"焊接工艺性","originalKeyword":"焊接工艺性"},{"id":"0b169469-a613-48a4-9c81-da71ec2d2e0c","keyword":"电弧稳定性","originalKeyword":"电弧稳定性"},{"id":"4c7f5391-1994-4e17-8d72-095b0a6f1f8b","keyword":"飞溅性","originalKeyword":"飞溅性"}],"language":"zh","publisherId":"clkfyyy201301003","title":"全位置自保护药芯焊丝工艺性能分析","volume":"28","year":"2013"},{"abstractinfo":"为研究基体偏压对AlCrSiON纳米复合涂层结构、力学性能和热稳定性的影响规律及机制,采用电弧离子镀技术在硬质合金基体上沉积AlCrSiON涂层.利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、纳米压痕仪(划痕仪)研究涂层组织结构和力学性能;通过真空退火试验研究涂层的高温稳定性.结果表明:AlCrSiON涂层为致密柱状晶结构,并主要由c-(Al,Cr)N和c-(Al,Cr)(O,N)两相组成,呈现出纳米复合结构.随着偏压的升高,涂层表面的颗粒数目和尺寸减少,组织结构更加致密;硬度和弹性模量均呈现出先增加后减小的趋势,当偏压为-80 V时分别达到最大值30.1 GPa和367.9 GPa.涂层具有良好的高温稳定性,不同偏压下沉积的AlCrSiON涂层经800-950℃热处理后均能够保持良好的结构稳定性及力学性能,但经1 100℃热处理后涂层发生相分解并引发组织结构变化,导致涂层硬度减小.","authors":[{"authorName":"耿东森","id":"bfb86291-1c96-4e3d-bf7f-41ccd94dac8b","originalAuthorName":"耿东森"},{"authorName":"吴正涛","id":"b1657622-9783-4547-b669-a8f81140937b","originalAuthorName":"吴正涛"},{"authorName":"聂志伟","id":"f73a36a9-7be5-4ba7-a475-c13146e449a3","originalAuthorName":"聂志伟"},{"authorName":"黎海旭","id":"e787b0b3-880c-45ee-a953-d693d092f2eb","originalAuthorName":"黎海旭"},{"authorName":"张小波","id":"c0f7b0cd-8d1f-4baf-a07a-19a27b6fe27e","originalAuthorName":"张小波"},{"authorName":"代伟","id":"2a6c698b-2759-4dee-a117-223fd2ba7857","originalAuthorName":"代伟"},{"authorName":"王启民","id":"7231210b-f5b5-4723-85f5-c09756d85274","originalAuthorName":"王启民"}],"doi":"10.11933/j.issn.1007-9289.2016.06.009","fpage":"60","id":"dffce538-62a8-47fa-a88d-289e55206c27","issue":"6","journal":{"abbrevTitle":"ZGBMGC","coverImgSrc":"journal/img/cover/ZGBMGC.jpg","id":"79","issnPpub":"1007-9289","publisherId":"ZGBMGC","title":"中国表面工程"},"keywords":[{"id":"52d3fbf3-55c9-45b2-a9b2-be993634c045","keyword":"基体偏压","originalKeyword":"基体偏压"},{"id":"402f93ec-d789-46af-97c5-4cf113de38aa","keyword":"AlCrSiON","originalKeyword":"AlCrSiON"},{"id":"39daf6e7-ac00-4924-aa95-7fb3eff438eb","keyword":"真空退火","originalKeyword":"真空退火"},{"id":"68364e0b-25f9-4fd0-a421-cf8f89c96c63","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"9313706d-28f3-4e30-8ea4-d2bbeb9db2ea","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"zgbmgc201606009","title":"基体偏压对电弧离子镀AlCrSiON涂层结构和热稳定性的影响","volume":"29","year":"2016"},{"abstractinfo":"采用实体显微镜、沉降观察等方法研究磁流体的沉降稳定性、温度稳定性和团聚稳定性,给出改善磁流体稳定性的措施.研究表明:磁流体的沉降稳定性分为软性沉降和硬性沉降,在-40~120℃内温度稳定性良好;经2 160 h放置后观察,具有良好的时效稳定性.添加表面活性剂可显著改善磁流体的沉降稳定性和团聚稳定性.","authors":[{"authorName":"谭锁奎","id":"f75faee9-bd5c-42ea-b52d-a0b166c1b8ef","originalAuthorName":"谭锁奎"},{"authorName":"郭红燕","id":"fc2f14d6-c1ee-4b94-9f82-5148c2b3e48a","originalAuthorName":"郭红燕"},{"authorName":"吴敏","id":"fb37bc4f-bfb1-4586-ab24-2b3449bb201e","originalAuthorName":"吴敏"},{"authorName":"纪松","id":"53da2b89-02ce-40a2-bdec-b7d6705e80a7","originalAuthorName":"纪松"}],"doi":"10.3969/j.issn.1004-244X.2009.05.025","fpage":"84","id":"f03954ec-4181-4dca-a817-04ce643449aa","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"ad63ceb1-c6e2-46ad-84fc-4797e74c2b5c","keyword":"磁流体","originalKeyword":"磁流体"},{"id":"cdcca17a-feb7-415e-b9ab-2433b9109f03","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"b4cd8f4e-5038-414f-aa69-b17efb1ac9f7","keyword":"软性沉降","originalKeyword":"软性沉降"},{"id":"ae783347-6c29-45bf-8562-73cec26c785d","keyword":"硬性沉降","originalKeyword":"硬性沉降"}],"language":"zh","publisherId":"bqclkxygc200905025","title":"磁流体的稳定性研究","volume":"32","year":"2009"},{"abstractinfo":"采用高功率直流电弧等离子体CVD工艺制备了不同厚度的金刚石自支撑膜。观察到在金刚石厚膜生长过程中出现形貌不稳定性,并往往导致膜层组织疏松,强度降低。本文从理论和实验观察两个方面进行了讨论。生长不稳定性在任何高速沉积CVD过程中都可能发生,而直流电弧等离子体的高温造成碳源高饱和度以及高温等离子体射流对衬底表面的冲击,使之比其它CVD金刚石膜沉积工艺具有更大的不稳定生长倾向。基于实验研究结果,建议在较低的气体压力下沉积,以减小金刚石厚膜生长的不稳定性。","authors":[{"authorName":"吕反修","id":"40a9cc7b-d5a3-445d-99cd-7a65d1cb696f","originalAuthorName":"吕反修"},{"authorName":"黄天斌","id":"5d8aa9ff-dc23-4179-a2be-842a53dc3097","originalAuthorName":"黄天斌"},{"authorName":"唐伟忠","id":"0c5f3a6f-faab-40d7-85de-02369fe97f5e","originalAuthorName":"唐伟忠"},{"authorName":"宋建华","id":"ee017e83-59a3-4f96-aed6-a4e358d78139","originalAuthorName":"宋建华"},{"authorName":"佟玉梅","id":"7caf95e1-a33a-4c8b-965f-15a18561df0c","originalAuthorName":"佟玉梅"}],"doi":"10.3969/j.issn.1009-6264.2001.01.010","fpage":"46","id":"f46c296f-ae17-461e-8d31-6ca11d1acd02","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"c473a1b1-447d-4956-bc85-0742ddf4be11","keyword":"生长不稳定性","originalKeyword":"生长不稳定性"},{"id":"41abdc8c-ea3a-459b-87f0-493a86bec107","keyword":"金刚石厚膜","originalKeyword":"金刚石厚膜"},{"id":"9496b236-bd08-450b-9e3e-01c5c381f48d","keyword":"化学气相沉积(CVD)","originalKeyword":"化学气相沉积(CVD)"},{"id":"b56b6e92-1a5c-4c1c-bf72-44bc420ab1a1","keyword":"直流电弧等离子体喷射","originalKeyword":"直流电弧等离子体喷射"}],"language":"zh","publisherId":"jsrclxb200101010","title":"直流电弧等离子体喷射金刚石厚膜生长不稳定性问题","volume":"22","year":"2001"},{"abstractinfo":"成核机理和稳定性是无皂乳液聚合的关键.无皂乳液的广泛应用需要解决高固含体系的稳定性问题.文中综述了影响无皂乳液稳定性的因素和增加稳定性的原理.","authors":[{"authorName":"张茂根","id":"d0ca3d5c-375f-4529-837c-45893a2d75cf","originalAuthorName":"张茂根"},{"authorName":"翁志学","id":"9c18f765-9406-4940-94bc-2edd93705407","originalAuthorName":"翁志学"},{"authorName":"黄志明","id":"0987ddf4-9fe7-477d-8b49-6e5520bb57bf","originalAuthorName":"黄志明"},{"authorName":"潘祖仁","id":"a7738936-b23d-4836-8364-8cbe9bb1a546","originalAuthorName":"潘祖仁"}],"doi":"","fpage":"30","id":"326a0a4c-a684-4324-8d60-2b05686650fb","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"22bf63da-dfbe-47a3-a2a5-631f11f57c55","keyword":"无皂乳液","originalKeyword":"无皂乳液"},{"id":"e24222a2-af40-42fe-9e73-fbe7672c7155","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"d6c0bf77-1a0a-46e4-b017-c8e7f42c801e","keyword":"原理","originalKeyword":"原理"}],"language":"zh","publisherId":"gfzclkxygc199905008","title":"无皂乳液的稳定性及增加稳定性的原理","volume":"15","year":"1999"},{"abstractinfo":"本文通过对一组在20℃水中养护了15年的矿渣硅酸盐水泥净浆进行XRD分析,对水泥浆体中钙矾石的长期稳定性及其机制进行了探讨.结果表明:在水泥浆体中,钙矾石向单硫型水化硫铝酸钙转变的速度十分缓慢;水泥中含铝(铁)相含量,尤其是C3A含量,是影响钙矾石长期稳定性的重要因素,C3A含量增加,其稳定性明显下降;钙矾石长期稳定性并不仅仅取决于体系中含铝(铁)相与SO3摩尔比,还取决于动力学因素.","authors":[{"authorName":"陈胡星","id":"d0b6a9bf-9287-40a9-87f7-f7250cf6c497","originalAuthorName":"陈胡星"},{"authorName":"叶青","id":"2e4fddcb-0555-48b1-9197-8cc0cc13929e","originalAuthorName":"叶青"},{"authorName":"沈锦林","id":"4374f070-c458-4bb6-aaea-f324d0de7b63","originalAuthorName":"沈锦林"},{"authorName":"胡国君","id":"9cfe6f34-93f3-4691-aaf5-dddb4416eb26","originalAuthorName":"胡国君"},{"authorName":"楼宗汉","id":"e8b0756a-82a6-46cf-a438-434441f4beb1","originalAuthorName":"楼宗汉"}],"doi":"10.3969/j.issn.1673-2812.2001.02.019","fpage":"69","id":"017b2244-540d-4464-8520-af6d4fd19af8","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"e1202e04-9d76-4aaa-b5fd-c6de932737f8","keyword":"粉煤灰","originalKeyword":"粉煤灰"},{"id":"9957ca6a-3081-4985-8aa8-329d4a53f3d7","keyword":"钙矾石","originalKeyword":"钙矾石"},{"id":"79646fae-4194-415f-83e1-5900de1d60cf","keyword":"氧化镁","originalKeyword":"氧化镁"},{"id":"855059ba-7d47-4a06-b0c1-31807900ba66","keyword":"双膨胀水泥","originalKeyword":"双膨胀水泥"}],"language":"zh","publisherId":"clkxygc200102019","title":"钙矾石的长期稳定性","volume":"19","year":"2001"},{"abstractinfo":"本文在前人的玻璃稳定性判据的基础上提出了一种新的玻璃稳定性判据kD(T)=v·exp(-E/RT·D),其中D=Tc(Tp—Tc)/T1(T1-Tg),kD(T)越小,玻璃越稳定.此判据通过引入修正因子D,从而把热力学因素与动力学因素结合起来.此判据受升温速率影响较小,能适用于不同的温度值,具有普适性,尤其是当频率因子V接近时,此判据显示了更大的优越性,能准确地判别玻璃的稳定性,而此时k(T)或ky(T)判据却不能准确地判别玻璃的稳定性.实验验证了本判据的正确性.","authors":[{"authorName":"段仁官","id":"a7427ab3-b619-40f3-85b4-9400b521d97b","originalAuthorName":"段仁官"},{"authorName":"梁开明","id":"267bb2a5-0b0c-4a02-b71d-28a395557556","originalAuthorName":"梁开明"}],"categoryName":"|","doi":"","fpage":"257","id":"2c79ef93-36d9-4ef4-a7c0-3878686bff8e","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c9f9a600-934b-45d9-8dc2-3cfc914bf167","keyword":"玻璃稳定性","originalKeyword":"玻璃稳定性"},{"id":"08cd6bd1-7127-4abe-bacc-2ed327514c80","keyword":" stable criterion","originalKeyword":" stable criterion"},{"id":"6db4d4d3-90af-481d-9075-de04954085c5","keyword":" kD(T)","originalKeyword":" kD(T)"}],"language":"zh","publisherId":"1000-324X_1997_3_17","title":"玻璃稳定性判据研究","volume":"12","year":"1997"},{"abstractinfo":"参考实验室的研究结果,经过半工业试验,试制了标准型热稳定性镁砖,制成品的气孔率为18%;荷重软化点为1570°—1620℃;耐急冷急热性(水冷却)平均为107次,质量优于耐崩裂性铬镁砖;提供了继续改进的意见:应当采用粗颗粒的预先合成的尖晶石,其加入量为10—30%。 添加氧化铝改善了镁砖热稳定性,认为是由于尖晶石与方镁石的膨胀系数不同,在制品烧成的冷却过程中,彼此的收缩不一样,因而产生了内应力,在一定的装填结构下,这种应力借助于不同组成的颗粒界面的开脱或基质部分的断裂而消除,制品内部产生了缝隙;缝隙的形成,缓冲了制品受急冷急热时所产生的另一种应力的作用,从而提高了制品的热稳定性。","authors":[{"authorName":"夏非","id":"3a38411b-d2d7-439f-a8d0-6adefdbdfb07","originalAuthorName":"夏非"},{"authorName":"谭浩然","id":"954c93c7-e1eb-4563-b4a9-ce2affce8270","originalAuthorName":"谭浩然"},{"authorName":"霍钰桃","id":"7fc60e78-905f-4497-afcf-fec5e7613488","originalAuthorName":"霍钰桃"},{"authorName":"毛东森","id":"bc634f53-982a-4cec-9a83-c39cfaded559","originalAuthorName":"毛东森"},{"authorName":"徐良瑛","id":"c4cd2811-bb7a-43f6-b5e4-336825b6630d","originalAuthorName":"徐良瑛"}],"categoryName":"|","doi":"","fpage":"275","id":"60aed22e-c852-4022-be36-b256b3b6e7d5","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1957_3_4","title":"热稳定性镁砖的研究","volume":"2","year":"1957"},{"abstractinfo":"采用XRD和TG-DTA等分析方法,考察了混合法制备的纯一阶、二阶、三阶和四阶FeCl3-GIC在空气中和某些液体介质中的结构稳定性及其热稳定性.实验结果表明:选择适宜的C/FeCl3摩尔比,调节反应温度和保温时间,采用混合法可以制备出纯一阶到纯四阶的FeCl3-GIC.上述各阶FeCl3-GIC在空气中相当稳定,在水和酸性液体介质中的稳定性较高,但在碱性介质和某些有机溶剂中的稳定性较差.其热分解温度约为330 ℃.","authors":[{"authorName":"刘洪波","id":"2f920abd-7e6c-4cdf-9bc4-bf8b8e843a96","originalAuthorName":"刘洪波"},{"authorName":"肖谷雨","id":"dc4f72ea-1931-4d02-9060-2919b75e1076","originalAuthorName":"肖谷雨"},{"authorName":"苏玉长","id":"55cb0015-b8fe-4ec4-bcd6-1cd60657da1e","originalAuthorName":"苏玉长"},{"authorName":"张红波","id":"abac6e62-785a-415f-abdc-b881417dd6e2","originalAuthorName":"张红波"}],"doi":"10.3969/j.issn.1007-8827.2000.01.004","fpage":"18","id":"7f151a26-a141-4e13-b2d4-3e517dc64ee0","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"03a6ed32-60d3-4ea7-8453-5f9d4659e3cb","keyword":"石墨层间化合物","originalKeyword":"石墨层间化合物"},{"id":"c776627f-2572-4619-98c7-e7ee60ca15d1","keyword":"氯化铁","originalKeyword":"氯化铁"},{"id":"8c2d7d71-e711-4cda-b383-2ac610dcebff","keyword":"混合法","originalKeyword":"混合法"},{"id":"09837791-f8af-442c-b6a7-c7fb026ffeca","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"xxtcl200001004","title":"FeCl3-GIC的结构稳定性与热稳定性研究","volume":"15","year":"2000"}],"totalpage":2499,"totalrecord":24987}