{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了两级拉伸疲劳载荷作用下,纤维增强复合材料界面的脱粘.首先基于剪切筒模型,建立了求解纤维与基体应力的控制微分方程,并求得了相关解答.然后借助断裂力学中描述疲劳裂纹扩展的公式和能量耗散率理论,给出了界面脱粘长度、加载次数以及脱粘应力之间的关系式.最后通过实例模拟了两级拉伸疲劳载荷作用下的界面裂纹扩展,分析了界面疲劳裂纹扩展速率、脱粘长度在不同加载方式下的变化规律,以及材料泊松比的变化对界面脱粘的影响.从而为进一步研究工程结构的疲劳破坏和材料的最优设计提供一定的理论依据.","authors":[{"authorName":"陈艳华","id":"3be457d0-9841-499a-8fc4-977803e78ea6","originalAuthorName":"陈艳华"},{"authorName":"石志飞","id":"f3c3d8cd-5f59-473d-8cc9-1fa4d8a23e2c","originalAuthorName":"石志飞"},{"authorName":"朱庆杰","id":"aaeffd34-b3c9-4cbd-9fc8-482f0f99fa52","originalAuthorName":"朱庆杰"}],"doi":"10.3321/j.issn:1000-3851.2004.04.028","fpage":"140","id":"fd021fb0-7ef1-4385-83a5-7b183bf5401a","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"664196e9-4184-45bc-8fde-706611f9f832","keyword":"纤维增强复合材料","originalKeyword":"纤维增强复合材料"},{"id":"5017ed20-7f53-4c91-a8e5-545b5a234e65","keyword":"两级载荷","originalKeyword":"两级载荷"},{"id":"0dafc47f-836b-4c00-b1ff-4b177c0cf665","keyword":"界面疲劳","originalKeyword":"界面疲劳"},{"id":"2493abd5-c249-4e52-8fcd-ddcdcd76b0eb","keyword":"脱粘","originalKeyword":"脱粘"},{"id":"ec814828-fd69-4944-abc7-69a0d3218c13","keyword":"裂纹扩展","originalKeyword":"裂纹扩展"}],"language":"zh","publisherId":"fhclxb200404028","title":"两级载荷作用下复合材料界面的脱粘","volume":"21","year":"2004"},{"abstractinfo":"应用红外探测技术跟踪记录了 2个纤维增强聚合物复合材料(FRP)加固混凝土试件界面疲劳损伤发展过程,结合系列疲劳试验分析了界面疲劳力学性能和疲劳寿命.结果显示FRP-混凝土界面粘结区和剥离区有明显的温度差异,应用红外探测技术可以较准确地检测界面的损伤发展状况.界而的疲劳损伤从跨中位置萌生后向一端扩展,损伤演化可分为萌生、稳定发展和失稳发展3个阶段,稳定发展阶段约占界面疲劳总寿命的99%左右.在界面疲劳寿命的主要阶段内界面疲劳损伤较小,发展缓慢,FRP应力也变化平稳.表明加崮的抗疲劳效果较好.最后给出了界面疲劳寿命的预测方法,界面疲劳破坏制约了FRP材料强度性能的充分利用.","authors":[{"authorName":"邓江东","id":"46f55985-d4c0-4bd6-b894-d1949beb52c2","originalAuthorName":"邓江东"},{"authorName":"宗周红","id":"ccb51344-9843-472c-ba11-540475b2032a","originalAuthorName":"宗周红"},{"authorName":"黄培彦","id":"42d25e33-0364-4ad2-8c97-910b3e280e75","originalAuthorName":"黄培彦"}],"doi":"","fpage":"155","id":"e1949b5a-061c-4c7c-bf8a-e3d750cbcf43","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"1aa9dcd3-f919-4693-b2b4-a35be19b8b94","keyword":"纤维增强聚合物复合材料","originalKeyword":"纤维增强聚合物复合材料"},{"id":"4fddab49-7df7-4c64-968a-8f246493b255","keyword":"混凝土结构加固","originalKeyword":"混凝土结构加固"},{"id":"d74798db-983d-459d-ab0f-28aba2b5cf62","keyword":"界面","originalKeyword":"界面"},{"id":"7d86745f-deb3-4ba3-88ed-a3db4a2eb533","keyword":"疲劳性能","originalKeyword":"疲劳性能"},{"id":"0f2631d5-5c85-4dbc-b18a-26ec790a74d8","keyword":"红外检测","originalKeyword":"红外检测"}],"language":"zh","publisherId":"fhclxb201001027","title":"FRP-混凝土界面疲劳性能分析","volume":"27","year":"2010"},{"abstractinfo":"总结了不同金属材料在低周疲劳过程中典型的晶界、孪晶界、相界和微电子互连界面的损伤开裂行为. 纯Cu中疲劳裂纹萌生的难易顺序为: 小角度晶界、驻留滑移带和大角度晶界. 对于纯Cu与铜合金中退火孪晶界, 是否萌生疲劳裂纹与合金成分有关, 随合金元素的加入降低了层错能, 退火孪晶界相对容易萌生疲劳裂纹. 对于Cu--Ag二元合金, 由于存在不同的晶界和相界面, 是否萌生疲劳裂纹取决于界面两侧晶体的取向差, 通常两侧取向差大的界面容易萌生疲劳裂纹. 在微电子互连界面中, 疲劳裂纹萌生位置与焊料成分和时效时间有关,对于Sn--Ag/Cu互连界面, 疲劳裂纹通常沿焊料与界面化合物结合处萌生; 对于Sn--Bi/Cu互连界面, 随时效时间增加会出现明显的由于Bi元素偏聚造成的界面脆性.","authors":[{"authorName":"张哲峰张鹏田艳中张青科屈伸邹鹤飞段启强李守新王中光","id":"44b21a60-7901-4b7f-acd5-cf9ad145fcf1","originalAuthorName":"张哲峰张鹏田艳中张青科屈伸邹鹤飞段启强李守新王中光"}],"categoryName":"|","doi":"","fpage":"788","id":"6c31f6bb-4ae4-45a7-88a3-682037444ccf","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"ab6e05d4-112a-49f2-9769-dd332ecf345f","keyword":"晶界","originalKeyword":"晶界"},{"id":"ed7f2749-77cf-4ad4-87ed-4b6aea778151","keyword":"twin boundary","originalKeyword":"twin boundary"},{"id":"e4c6d7df-069c-4d6e-aa3c-e5a2b3fbcc15","keyword":"phase boundary","originalKeyword":"phase boundary"},{"id":"7fbadcda-e87e-485f-a9af-3ba298687747","keyword":"interconnect interface","originalKeyword":"interconnect interface"},{"id":"b7ecb96e-e401-4350-a716-0b65f0efe590","keyword":"fatigue cracking","originalKeyword":"fatigue cracking"}],"language":"zh","publisherId":"0412-1961_2009_7_8","title":"金属材料疲劳损伤的界面效应","volume":"45","year":"2009"},{"abstractinfo":"总结了不同金属材料在低周疲劳过程中典型的晶界、孪晶界、相界和微电子互连界面的损伤开裂行为.纯Cu中疲劳裂纹萌生的难易顺序为:小角度晶界、驻留滑移带和大角度晶界.对于纯Cu与铜合金中退火孪晶界,是否萌生疲劳裂纹与合金成分有关,随合金元素的加入降低了层错能,退火孪晶界相对容易萌生疲劳裂纹.对于Cu-Ag二元合金,由于存在不同的晶界和相界面,是否萌生疲劳裂纹取决于界面两侧晶体的取向差,通常两侧取向差大的界面容易萌生疲劳裂纹.在微电子互连界面中,疲劳裂纹萌生位置与焊料成分和时效时间有关,对于Sn-Ag/Cu互连界面,疲劳裂纹通常沿焊料与界面化合物结合处萌生;对于Sn-Bi/Cu互连界面,随时效时间增加会出现明显的由于Bi元素偏聚造成的界面脆性.","authors":[{"authorName":"张哲峰","id":"81587620-82ef-44c8-8a9d-8c690a22f92b","originalAuthorName":"张哲峰"},{"authorName":"张鹏","id":"20591002-d39d-4f62-a5f6-47d488c95df0","originalAuthorName":"张鹏"},{"authorName":"田艳中","id":"82585b8b-affe-4db5-930b-e5ac74ab2bb2","originalAuthorName":"田艳中"},{"authorName":"张青科","id":"82cf2b0e-dbfd-40af-96f9-96a1f5f3d9c0","originalAuthorName":"张青科"},{"authorName":"屈伸","id":"c5b24012-c1ae-485b-aa57-f2de463d57da","originalAuthorName":"屈伸"},{"authorName":"邹鹤飞","id":"65d18486-2294-472e-abff-8bb96dfffdf7","originalAuthorName":"邹鹤飞"},{"authorName":"段启强","id":"f1a21780-96ed-4bdc-bd6a-ddbc2f7aad8e","originalAuthorName":"段启强"},{"authorName":"李守新","id":"b5f0cd56-1b12-4560-8c65-a8f371dfc2cb","originalAuthorName":"李守新"},{"authorName":"王中光","id":"79d91d5e-8276-4adf-ac53-4b94f8afdc25","originalAuthorName":"王中光"}],"doi":"10.3321/j.issn:0412-1961.2009.07.003","fpage":"788","id":"3cdfde02-b915-4bfc-91eb-222e00f12392","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"eb5f50d2-e1ad-41bd-b4e8-9ff93543e0a7","keyword":"晶界","originalKeyword":"晶界"},{"id":"6831cc23-8138-4752-aa55-ec14e9bc675b","keyword":"孪晶界","originalKeyword":"孪晶界"},{"id":"40a00cf0-cbee-46ca-949a-2403239dc1aa","keyword":"相界","originalKeyword":"相界"},{"id":"508af6ed-d28f-4bfb-ba80-fbdebf8b7723","keyword":"互连界面","originalKeyword":"互连界面"},{"id":"d3dc0c83-7e6f-4f9c-b3fb-92ef0cbcf119","keyword":"疲劳裂纹","originalKeyword":"疲劳裂纹"}],"language":"zh","publisherId":"jsxb200907003","title":"金属材料疲劳损伤的界面效应","volume":"45","year":"2009"},{"abstractinfo":"提出一种三维黏聚力界面损伤模型, 可以描述单调和交变载荷下层合复合材料混合型的分层损伤. 损伤用界面所经历过的最大位移间断来定义, 交变荷载下一个周期的加、卸载过程均考虑有损伤积累, 模型还考虑了单调和疲劳损伤的门槛效应和交变载荷下裂纹的闭合效应. 建立了包含该界面损伤模型的初始无厚度八节点等参界面单元, 并引入加速损伤的算法, 用一次计算循环代替若干次实际循环, 提高计算效率. 用该单元模型对某复合材料动部件疲劳分层裂纹的形成和扩展进行了模拟, 得到了分层裂纹前沿界面局部损伤和结构疲劳分层的发展规律, 模型预测的裂纹长度一荷载循环次数对数(α-logN)曲线和结构剩余刚度与试验数据吻合.","authors":[{"authorName":"喻溅鉴","id":"9930b750-2532-4cc0-81e5-a92056cc858e","originalAuthorName":"喻溅鉴"},{"authorName":"周储伟","id":"78f99dcf-3196-42e9-b203-26ccf7aeb9d2","originalAuthorName":"周储伟"}],"doi":"","fpage":"167","id":"05d0bd96-873e-4cfb-bad4-25df4ec2540e","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"7cd3f83a-1f22-40f8-bbfb-8ed09261bcc7","keyword":"层合复合材料","originalKeyword":"层合复合材料"},{"id":"e6c73e35-ffa5-4223-9466-8c35f6528306","keyword":"疲劳分层","originalKeyword":"疲劳分层"},{"id":"ef903c45-e2d7-4960-861d-becced6fa20b","keyword":"损伤累积","originalKeyword":"损伤累积"},{"id":"0666fc54-6eab-42f8-812c-961e5c279e87","keyword":"黏聚力模型","originalKeyword":"黏聚力模型"},{"id":"34a21eac-8784-4a0c-9532-4388d3b30039","keyword":"界面单元","originalKeyword":"界面单元"}],"language":"zh","publisherId":"fhclxb200906028","title":"复合材料疲劳分层的界面单元模型","volume":"26","year":"2009"},{"abstractinfo":"采用动态疲劳试验研究了不同界面粘结状况的GMT-PP复合材料的疲劳行为.结果表明:GMT-PP界面粘结状况对其拉伸疲劳性能有明显的影响,界面粘结的改善有利于抗疲劳性的提高.进而通过扫描电镜的观察发现具有良好界面粘结的GMT-PP在静态拉伸时破坏形式为基体破坏,而动态拉伸疲劳破坏则以界面脱粘为主.由于界面粘结强度越高,界面脱粘过程越慢,因而,材料的抗疲劳性越好.","authors":[{"authorName":"余剑英","id":"b44cad14-40e1-4045-8837-937dd6ad4b02","originalAuthorName":"余剑英"},{"authorName":"周祖福","id":"0808311a-c411-42af-977d-2f1b432a47f8","originalAuthorName":"周祖福"},{"authorName":"晏石林","id":"91f465ae-bedd-41e1-b38d-e7b843192287","originalAuthorName":"晏石林"}],"doi":"10.3321/j.issn:1000-3851.2001.02.008","fpage":"32","id":"fa0313d7-52e2-4cb3-8e9c-d6a87063264d","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"0d833605-88f0-49ca-9728-ee1fa3fe6f43","keyword":"玻璃纤维","originalKeyword":"玻璃纤维"},{"id":"92924b68-7c98-4082-86a4-6febe34906e9","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"772a8101-7464-40e7-8bd7-62d6f2813904","keyword":"动态疲劳","originalKeyword":"动态疲劳"},{"id":"3e0fb0f0-d86e-4d58-8b48-6db0c2aad9c6","keyword":"界面粘结","originalKeyword":"界面粘结"}],"language":"zh","publisherId":"fhclxb200102008","title":"GMT-PP复合材料的界面粘结状况与动态疲劳关系研究","volume":"18","year":"2001"},{"abstractinfo":"采用系统分析的方法,通过3点弯曲疲劳实验,跟踪监测了奥氏体-贝氏体球墨铸铁试样的疲劳损伤过程.实验结果表明,奥氏体-贝氏体球墨铸铁中石墨球与基体组织界面有一定的疲劳强度;在不同的疲劳载荷作用下,该处疲劳开裂的时间和程度存在差异,并对疲劳裂纹的萌生和扩展有不同的影响.","authors":[{"authorName":"吴维青","id":"98c7d34f-d720-497e-b119-ae3633473859","originalAuthorName":"吴维青"}],"doi":"","fpage":"56","id":"cde3e231-70be-4fa7-8ec1-041e4ade58c7","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"c51eabb5-99a3-4f0d-ab5d-5ad617eea42a","keyword":"球墨铸铁","originalKeyword":"球墨铸铁"},{"id":"11740d41-9e79-4934-901c-b202a088b7a3","keyword":"疲劳损伤","originalKeyword":"疲劳损伤"},{"id":"bcf97427-f0e6-4abe-889c-8a64dbf62d06","keyword":"石墨-基体界面","originalKeyword":"石墨-基体界面"}],"language":"zh","publisherId":"gtyjxb200405013","title":"奥氏体-贝氏体球墨铸铁中石墨与基体界面疲劳强度","volume":"16","year":"2004"},{"abstractinfo":"研究了界面改性对单向碳纤维增强复合材料疲劳性能的影响.通过以碳酸氢氨为电解质的阳极氧化和以马来酸酐为溶质进行的低温等离子体处理对碳纤维表面进行改性,观察交变载荷下复合材料界面性能退化和疲劳损伤规律.发现良好的界面粘接可以提高复合材料的抗疲劳性能,但是过强的界面粘接反而导致复合材料疲劳性能的下降.只有当材料具有合适强弱的界面时,才具有较好的疲劳性能.","authors":[{"authorName":"刘宇艳","id":"284f277c-de55-40f5-a947-5dd6bf7d1902","originalAuthorName":"刘宇艳"},{"authorName":"黄玉东","id":"bf34f12c-35e3-4354-af97-ff57f41a9c98","originalAuthorName":"黄玉东"},{"authorName":"刘立洵","id":"b469a825-48a8-43b1-8132-bc91d61015c8","originalAuthorName":"刘立洵"},{"authorName":"陶少辉","id":"c3cd9361-f071-4ef6-a3d7-3cfc75cb93f9","originalAuthorName":"陶少辉"}],"doi":"10.3969/j.issn.1001-0777.2003.01.003","fpage":"5","id":"7db5df3b-7966-409c-a304-381f4118b20a","issue":"1","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"6b34ebff-84eb-45be-8bde-2e3a5e171c1b","keyword":"单向碳纤维增强复合材料","originalKeyword":"单向碳纤维增强复合材料"},{"id":"7140ab9b-652e-46a3-be8c-c79207b19f2b","keyword":"界面","originalKeyword":"界面"},{"id":"b0620857-fd11-471b-98e0-e73c2d13cfee","keyword":"疲劳","originalKeyword":"疲劳"}],"language":"zh","publisherId":"wlcs200301003","title":"界面性能对单向碳纤维/环氧复合材料弯曲疲劳性能的影响","volume":"","year":"2003"},{"abstractinfo":"通过两种Al 合金表面处理方法及水煮老化处理,得到了不同界面结合状态的玻璃纤维-Al 混杂复合层板,进行了层板层间剪切强度和疲劳裂缝扩展试验,研究了界面结合强度对层板疲劳行为的影响。试验发现,当界面结合强度较高时,层板的疲劳裂缝扩展速率较低,伴随疲劳裂缝扩展而产生的脱层破坏区尺寸较小,脱层破坏发生在树脂层与增强纤维之间;界面结合强度较低时,层板的疲劳裂缝扩展速率较高,脱层区尺寸较大,脱层破坏发生在Al 层和树脂层之间。","authors":[{"authorName":"刘丹梅","id":"30d72416-bed7-4201-841c-d7ed7dc69355","originalAuthorName":"刘丹梅"},{"authorName":"杨为奉","id":"f6dae28e-e4fd-4b98-a4cc-0cdc4f596cf2","originalAuthorName":"杨为奉"},{"authorName":"姚枚","id":"cf646938-c33f-426d-b35e-2699452cee50","originalAuthorName":"姚枚"},{"authorName":"夏月波","id":"dd85d1c5-cfea-477c-b45f-4aa8b5807c5b","originalAuthorName":"夏月波"},{"authorName":"郑瑞琪","id":"16cd9ce1-6a0f-4895-8a0e-d8817a26b2cd","originalAuthorName":"郑瑞琪"},{"authorName":"胡宏军","id":"2840d6df-746d-4d44-bbbc-9cd097667c02","originalAuthorName":"胡宏军"},{"authorName":"李宏运","id":"a6f7e8ff-049b-4f0f-b23a-745f9a5fed9a","originalAuthorName":"李宏运"}],"categoryName":"|","doi":"","fpage":"263","id":"885f6499-4d60-4643-abb8-dee21716e7bd","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"b99e8d72-0679-4b16-801a-6d0b441e4ce8","keyword":"层板","originalKeyword":"层板"},{"id":"d22ced1d-0cb1-46c3-87ed-d8d1282c58fc","keyword":"interlaminar strength","originalKeyword":"interlaminar strength"},{"id":"53291966-0098-46ad-a143-79c6a007130c","keyword":"fatigue crack propagation","originalKeyword":"fatigue crack propagation"},{"id":"87b36019-0336-4377-bfc9-32dfc9b3d8f6","keyword":"delamination","originalKeyword":"delamination"}],"language":"zh","publisherId":"1005-3093_1993_3_6","title":"界面结合状态对玻璃纤维-Al混杂复合层板疲劳行为的影响","volume":"7","year":"1993"},{"abstractinfo":"本文考察了LY12爆炸复合板不同取向的拉伸强度,分层韧性及垂直层合界面疲劳裂纹扩展行为.观测了垂直界面疲劳长裂纹的扩展路径形态,并利用断裂力学理论讨论了材料的层状结构与其疲劳性能之间的关系.结果表明,层合板中的层间界面性能对其疲劳性能具有重要影响,在LY12爆炸复合板中,垂直板面方向的疲劳裂纹在界面处发生了明显的止裂.","authors":[{"authorName":"崔建国","id":"bd710817-0b71-4da8-b9f1-ef00fc420726","originalAuthorName":"崔建国"},{"authorName":"付永辉","id":"3b8f7b45-4928-4bc1-a989-4cb3bc312294","originalAuthorName":"付永辉"},{"authorName":"李年","id":"ac4f25ad-1771-41a2-802f-198d42fb61c7","originalAuthorName":"李年"},{"authorName":"孙军","id":"226f29a0-8f06-4f88-b672-c7d138e8e46a","originalAuthorName":"孙军"},{"authorName":"何家文","id":"ccd6de08-cbc5-4554-bf31-cdcf7ff2e35a","originalAuthorName":"何家文"}],"doi":"10.3969/j.issn.1673-2812.2000.z1.072","fpage":"309","id":"ec0629b3-2358-4eb5-a443-f3aa0a601b76","issue":"z1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"900f778e-b259-4803-a621-a75f64fd87c6","keyword":"爆炸复合板","originalKeyword":"爆炸复合板"},{"id":"8aed237f-f351-4b05-a8ef-84ae9b812306","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"f9770eb2-ac80-4fc2-a661-130fb8b5d2f8","keyword":"界面","originalKeyword":"界面"}],"language":"zh","publisherId":"clkxygc2000z1072","title":"LY12爆炸复合板垂直界面疲劳性能研究","volume":"18","year":"2000"}],"totalpage":1381,"totalrecord":13809}