{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用压力浸渗法制备单向M40+SiCp/ZM6复合材料.利用扫描电镜、透射电镜、拉伸试验机和热膨胀仪等分析测试手段研究了SiC颗粒混杂对复合材料微观组织、力学性能及热膨胀系数的影响.结果表明,SiC与ZM6发生界面反应,生成羽毛状的NdSi2界面反应物,提高界面润湿性.SiC颗粒混杂可以提高复合材料力学性能,使复合材料纵向热膨胀系数升高,横向热膨胀系数降低.用文中提出的热膨胀系数计算方法,可以准确计算单向碳纤维与SiC颗粒混杂增强复合材料在20~150℃范围内的平均热膨胀系数.","authors":[{"authorName":"宋美慧","id":"2fae2ab5-31aa-483d-a232-ef1f0800469d","originalAuthorName":"宋美慧"},{"authorName":"武高辉","id":"c6227ab3-4d74-4759-a689-6e315188ad45","originalAuthorName":"武高辉"},{"authorName":"修子扬","id":"2cb5b0c3-9870-4417-921f-34aa92757eb2","originalAuthorName":"修子扬"},{"authorName":"陈国钦","id":"0980369b-ef28-479e-a9c8-284baadc7971","originalAuthorName":"陈国钦"}],"doi":"","fpage":"2187","id":"7dcf29a1-be98-4693-9a56-88395749bb8d","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4b908428-3977-48d5-91c6-d8fbc831170e","keyword":"Cf/Mg复合材料","originalKeyword":"Cf/Mg复合材料"},{"id":"a19fafe8-70da-4cb2-a895-95782aca6a85","keyword":"SiC颗粒","originalKeyword":"SiC颗粒"},{"id":"dfb55ae9-c653-450f-ac19-a184110ea7b1","keyword":"界面","originalKeyword":"界面"},{"id":"af886af2-9c41-43d6-b3c2-9003faba0de7","keyword":"热膨胀","originalKeyword":"热膨胀"},{"id":"58fb6114-71bd-4fea-90bb-0503af59ac71","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjsclygc201409028","title":"SiC颗粒混杂对M40/ZM6复合材料组织及性能的影响","volume":"43","year":"2014"},{"abstractinfo":"为实现Cf/Mg复合材料异形件的近净成形,在分析金属基复合材料液态浸渗制备技术的基础上,提出了真空压力浸渗-液固挤压制备Cf/Mg复合材料新工艺,并设计了相应的成形装置.利用设计的装置开展2D碳毡增强镁基复合材料异形件的制备研究.在熔炼温度为760~ 820℃,预制体预热温度为570~ 610℃,浸渗气压0.5 MPa和挤压载荷10~30 MPa等工艺参数下,成功制备出Cf/Mg复合材料异形制件.对复合材料制件进行宏观尺寸测量及扫描电镜(SEM)观察发现,制件外形完整,与设计一致;制件内部组织致密、纤维分布均匀;预制体在制备过程中没有发生明显的变形和破坏.","authors":[{"authorName":"畅志远","id":"3339830e-88f3-42c6-80be-ee7034610156","originalAuthorName":"畅志远"},{"authorName":"齐乐华","id":"b6bafa9f-fbf3-49db-a634-0e3b2652bc87","originalAuthorName":"齐乐华"},{"authorName":"关俊涛","id":"9d687981-0ed9-408b-87c9-eef7d77b89b7","originalAuthorName":"关俊涛"},{"authorName":"周计明","id":"b97e589a-f393-4883-ad49-80f105a81f0c","originalAuthorName":"周计明"},{"authorName":"马玉钦","id":"f1eb94e7-123f-4b85-b39f-25ef66a70f6c","originalAuthorName":"马玉钦"}],"doi":"","fpage":"36","id":"4f49b4f9-c74e-4143-a43d-3758a9303920","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"689f6501-fe3d-4fb6-9562-35812d16e092","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"78e9bef5-12ed-4f2f-965a-0fc829ec1ea1","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"6f533eae-67a9-411d-b51d-74eedd82e371","keyword":"异形件","originalKeyword":"异形件"},{"id":"815153d9-a837-4538-ae60-904b09c3b9e3","keyword":"真空压力浸渗","originalKeyword":"真空压力浸渗"},{"id":"5677fe78-08cd-46d6-bc51-76dde5bd1767","keyword":"液固挤压","originalKeyword":"液固挤压"},{"id":"f6481405-accd-47f4-bbba-722af55511cd","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"clkxygy201401007","title":"Cf/Mg复合材料异形件成形装置设计与实验研究","volume":"22","year":"2014"},{"abstractinfo":"采用随动硬化有限元模型,研究了三维碳纤维增强镁基复合材料(3D-Cf/Mg)基体热残余应力的大小、分布以及不同工艺处理对热残余应力的影响.同时,对复合材料进行了高、低温处理,利用XRD定性分析了处理前后复合材料基体热残余应力的变化.计算结果表明:经过-196℃低温处理后,复合材料基体的平均Mises热残余应力由169.06 MPa减小至55.29 MPa;高温处理后,基体平均热残余应力几乎不变.该结果与实验结果吻合,证明了低温处理能明显降低复合材料基体的热残余应力.","authors":[{"authorName":"谢薇","id":"4ab386c3-9d83-43a3-af27-484a51e81c28","originalAuthorName":"谢薇"},{"authorName":"周聪","id":"cfec8591-c952-4466-8123-66da9db33969","originalAuthorName":"周聪"},{"authorName":"马乃恒","id":"75fe0a1b-1d21-4d9c-a39d-46657d862a01","originalAuthorName":"马乃恒"},{"authorName":"王浩伟","id":"b80b3745-1c2b-49d9-a801-05c5f80e3d77","originalAuthorName":"王浩伟"}],"doi":"10.3969/j.issn.1007-2330.2012.03.018","fpage":"75","id":"4fb3d98d-147f-474f-85b4-11d9edd39018","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"7ed1209f-8c19-466f-8762-66cabc618ce1","keyword":"三维碳纤维","originalKeyword":"三维碳纤维"},{"id":"514db0f9-f3d1-4d2e-953f-f6e7c8ee34e2","keyword":"镁基复合材料","originalKeyword":"镁基复合材料"},{"id":"8f12d5ed-2c7e-4646-9bdd-bcf7b01777d1","keyword":"热残余应力","originalKeyword":"热残余应力"},{"id":"910cca25-5eb1-477f-8c31-7aaeac0c9d5c","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"yhclgy201203018","title":"3D-Cf/Mg复合材料的热残余应力研究","volume":"42","year":"2012"},{"abstractinfo":"采用负压浸渗-液固挤压法制备了定向短切碳纤维(aligned Csf)及穿刺-2D碳纤维织物(2.5DCf)增强镁合金复合材料,观察了两种复合材料的微观组织结构,测定了其在30~350℃范围的热膨胀系数(α),并在Schapery模型的基础上提出了计算定向Csf/Mg复合材料及2.5DCf/Mg复合材料α值的修正模型。结果表明,在30~200℃范围内,两种Cf/Mg复合材料的α值均表现出随温度的升高而升高的趋势,但在超过250℃以后,α值出现降低或稳定的现象,其原因为随着温度的升高,铝元素固溶度的增大、基体发生部分塑性变形等因素导致的;提出的修正模型理论计算值与其相应的实验测试α值之间的误差均在5%之内,表明该修正模型能够有效预测实验中的α值。","authors":[{"authorName":"童永煌","id":"66ccd9fc-0eb1-4233-a0a5-c96ebc20e0c8","originalAuthorName":"童永煌"},{"authorName":"付业伟","id":"5e70587e-2dba-45f2-ac51-f684bf9a2a3b","originalAuthorName":"付业伟"},{"authorName":"齐乐华","id":"e19dcf46-f821-4731-956c-5af408ce5773","originalAuthorName":"齐乐华"},{"authorName":"程三旭","id":"6ab04997-e19a-4229-afe9-6bebb4158f49","originalAuthorName":"程三旭"},{"authorName":"李贺军","id":"c16f5d93-c311-4602-bc91-7d2b6a4dac98","originalAuthorName":"李贺军"}],"doi":"","fpage":"932","id":"3a77174d-93d8-4806-b04f-33d2d483d390","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ba73d47c-de29-4606-abc2-c6ff61d790ac","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"21893885-18da-44e8-b726-981e9c2de18a","keyword":"镁基复合材料","originalKeyword":"镁基复合材料"},{"id":"dce27cb0-2181-42a2-b4a1-2adfe3724f74","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"17b2112f-4fff-41e4-a56d-e126794c4609","keyword":"理论计算","originalKeyword":"理论计算"}],"language":"zh","publisherId":"gncl201207030","title":"Cf/Mg复合材料的热膨胀系数及其理论计算","volume":"43","year":"2012"},{"abstractinfo":"利用X射线光电子能谱(XPS)和扫描电子显微镜(SEM)研究了碳纤维/杂萘联苯聚醚酮(CF/PPEK)和碳纤维/杂萘联苯聚醚砜(CF/PPES)复合材料的界面状态和结构,证明了纤维和聚合物的界面上确有新的化学结构出现,使CF/PPEK和CF/PPES的界面形成强的物理和化学作用.","authors":[{"authorName":"刘文博","id":"8627b9c6-f707-4b57-8a1d-238245a1274b","originalAuthorName":"刘文博"},{"authorName":"王荣国","id":"af912538-4577-4af1-bfff-dcdece6c66fd","originalAuthorName":"王荣国"},{"authorName":"贾近","id":"2808e87b-3667-4027-952a-26da058a27cf","originalAuthorName":"贾近"},{"authorName":"张洪涛","id":"f8c4fdc9-fa99-49ee-b474-b4da8223db60","originalAuthorName":"张洪涛"},{"authorName":"谢怀勤","id":"1bd3c642-04d9-47ff-819d-02b2eddd8e25","originalAuthorName":"谢怀勤"}],"doi":"10.3969/j.issn.1005-5053.2004.06.009","fpage":"38","id":"7415d6e0-52f1-4494-b9c6-7e2bcf7e345c","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"f20ae443-8644-48d2-a77a-0c040a60824d","keyword":"CF/PPEK","originalKeyword":"CF/PPEK"},{"id":"aeef7bb1-fa75-4115-a367-7cd94949007d","keyword":"CF/PPES","originalKeyword":"CF/PPES"},{"id":"54f987ba-840f-4a0d-85e4-d864559e8309","keyword":"界面研究","originalKeyword":"界面研究"},{"id":"7a70e44c-cf2e-42a9-a520-3ec993aa808b","keyword":"化学结构","originalKeyword":"化学结构"}],"language":"zh","publisherId":"hkclxb200406009","title":"CF/PPEK和CF/PPES复合材料界面研究","volume":"24","year":"2004"},{"abstractinfo":"利用熔盐反应法在Cf/SiC复合材料表面锆金属化的基础上,用TiCuZrNi非晶钎焊箔实现Cf/SiC复合材料与Nb合金钎焊连接.研究发现Cf/SiC复合材料表面Zr金属化层主要的物相为Zr、Zr3O、ZrC和Zr2Si;钎料对Zr金属化层的润湿性良好,钎料中活性元素Ti向Cf/SiC复合材料一侧明显扩散并发生化学反应,实现了钎料与Cf/SiC复合材料的良好键合,并且可以深入Cf/SiC复合材料孔隙形成\"钉扎\"效应;接头剪切强度达124 MPa,750℃热冲击5次后剪切强度达70 MPa;断裂部分发生在Cf/SiC复合材料与钎料界面处,部分位于Cf/SiC复合材料近缝区.","authors":[{"authorName":"梁赤勇","id":"43a30a5e-94d8-4266-bb67-4bc45162ca3f","originalAuthorName":"梁赤勇"},{"authorName":"堵永国","id":"79126a88-1e7e-49b8-917e-fe36d6910cb7","originalAuthorName":"堵永国"},{"authorName":"张为军","id":"25445c8e-175a-4e01-9c2c-4e31f2bf10a6","originalAuthorName":"张为军"},{"authorName":"郑晓慧","id":"033e9def-8b68-4495-a1a2-132c5fb12f17","originalAuthorName":"郑晓慧"},{"authorName":"芦玉峰","id":"906ca5fc-b754-4f5d-ba47-1168f27ca7c2","originalAuthorName":"芦玉峰"}],"doi":"10.3969/j.issn.1007-2330.2009.03.011","fpage":"45","id":"76c0e980-b434-4680-a4b6-3a9fddbe33b8","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c8a15c6f-daef-44e2-a901-e49aa9939097","keyword":"Cf/SiC复合材料","originalKeyword":"Cf/SiC复合材料"},{"id":"055e0071-fa77-495c-8c0d-f06f7664e550","keyword":"熔盐反应","originalKeyword":"熔盐反应"},{"id":"20331e8f-f2d3-4c9e-ad60-12a8848b38ee","keyword":"锆","originalKeyword":"锆"},{"id":"56b004ea-f4a3-45aa-9ae4-b5ad1e9aba8d","keyword":"金属化","originalKeyword":"金属化"},{"id":"16ba6894-a12c-4262-8810-911f728821fd","keyword":"钎焊","originalKeyword":"钎焊"}],"language":"zh","publisherId":"yhclgy200903011","title":"Cf/SiC复合材料与Nb合金的连接","volume":"39","year":"2009"},{"abstractinfo":"Cf/SiC陶瓷基复合材料作为高温结构材料,在高性能发动机上具有潜在的应用前景.本文综述了制备Cf/SiC陶瓷基复合材料增强相碳纤维的发展;Cf/SiC复合材料的基本制备工艺及性能(包括力学性能、复合材料氧化性能、界面性质等);复合材料当前的应用等各方面的发展.最后指出了有待解决的问题和今后努力的方向.","authors":[{"authorName":"曹英斌","id":"8ca69b31-0857-4f5b-a9d3-201b8b0b8b19","originalAuthorName":"曹英斌"},{"authorName":"张长瑞","id":"1c9bdd70-3fc6-43ce-b725-fbfd0c409b6b","originalAuthorName":"张长瑞"},{"authorName":"陈朝辉","id":"e1d3c47f-1fc8-4f2b-a16c-1b25d0b2d41f","originalAuthorName":"陈朝辉"},{"authorName":"周新贵","id":"69524a68-658f-4880-a1e2-92e210cb4ba5","originalAuthorName":"周新贵"}],"doi":"10.3969/j.issn.1007-2330.1999.05.003","fpage":"10","id":"34afb7ad-151f-4094-9419-a70246695cf4","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"1769956d-35ae-4d8e-bf73-dba5da2271ff","keyword":"陶瓷基复合材料","originalKeyword":"陶瓷基复合材料"},{"id":"7d924e4c-f001-481a-89cc-b8d27f8d642c","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"acf080ee-c8ea-4fce-a86e-06de6266a9e9","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"685c15a0-4e11-495a-b7cf-0e6cc8a13025","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"yhclgy199905003","title":"Cf/SiC陶瓷基复合材料发展状况","volume":"29","year":"1999"},{"abstractinfo":"利用热膨胀仪测定压力浸渗法制各的单向碳纤维增强镁复合材料在20~300℃区间的平均热膨胀系数,讨论热处理工艺、碳纤维弹性模量、基体合金种类等因素对连续纤维增强镁基复合材料热膨胀系数的影响.结果表明,可以通过退火处理降低复合材料的热膨胀系数.同时,选择高模量石墨纤维或选择低屈服强度基体合金都可以获得低热膨胀系数的复合材料.对计算复合材料横向热膨胀系数的理论公式进行改进,与实验测试值比较,理论计算值更加接近实际测试值.提出计算层合板结构复合材料二维平面内热膨胀系数的模型,计算出不同铺层方式下层合板复合材料的热膨胀系数,结果表明当层合板采用[0/±15/±30/±45/±60/±75/90]s的铺层方式时,复合材料热膨胀系数基本达到各向同性.","authors":[{"authorName":"宋美慧","id":"5652314e-508c-4713-8a18-0bc47fba3f7a","originalAuthorName":"宋美慧"},{"authorName":"武高辉","id":"59cae58e-4541-4d38-b5b1-a33dfe02f54f","originalAuthorName":"武高辉"},{"authorName":"王宁","id":"8066848e-4321-4d20-b32b-47a0cdff4778","originalAuthorName":"王宁"},{"authorName":"张贵一","id":"b1f09d6d-cd82-4636-8a03-c5c556d329a3","originalAuthorName":"张贵一"}],"doi":"","fpage":"1043","id":"5817ab0b-4a71-4b91-8577-496ddd04c55a","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"65fdb67b-66fb-419d-915d-326f453493ad","keyword":"镁基复合材料","originalKeyword":"镁基复合材料"},{"id":"2bff0030-30d9-447c-ad41-d57486f5680b","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"454eeaca-db42-4397-9ee5-4f55d57ad4cb","keyword":"热膨胀","originalKeyword":"热膨胀"}],"language":"zh","publisherId":"xyjsclygc200906023","title":"Cf/Mg复合材料热膨胀系数及其计算","volume":"38","year":"2009"},{"abstractinfo":"采用压力浸渗法制备碳纤维织物(2D Cf)及单向碳纤维(1D Cf)增强镁合金复合材料, 测试了两种复合材料在 50---350 ℃范围内的热膨胀行为. 结果表明, 2D Cf/镁合金复合材料(简称2D)平面内不同方向的平均热膨胀系数均随温度升高不断降低. 从50到350℃, 0°/90°方向的平均热膨胀系数由 4.03×10-6 ℃-1降至1.83×10-6 ℃-1; 45°方向的平均热膨胀系数由4.53×10-6 ℃-1降至2.31×10-6 ℃-1. 根据推导公式可以准确计算2D增强复合材料20---150 ℃范围内0°/90°方向的平均热膨胀系数. 20---150 ℃热循环测试结果表明, 2D复合材料具有较好的尺寸稳定性, 在热循环过程中存在应变滞后现象, 其残余塑性变形主要是基体合金在热应力作用下产生的塑性变形, 并且从第2次热循环起, 复合材料在热循环中产生的净应变不随热循环次数增加而变化.","authors":[{"authorName":"宋美慧宋坚陈国钦王宁武高辉","id":"af2bef89-4331-44b5-8793-530319325008","originalAuthorName":"宋美慧宋坚陈国钦王宁武高辉"}],"categoryName":"|","doi":"","fpage":"119","id":"95c4775b-f4dc-4bf0-b56f-d17dd3afad56","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a216dfd0-4912-4c5c-8fb0-698c565493ef","keyword":"碳纤维织物/Mg-2.0Re-0.2Zr合金复合材料","originalKeyword":"碳纤维织物/Mg-2.0Re-0.2Zr合金复合材料"},{"id":"03021ab8-30a0-4c7e-98e7-4b0fe3e061f5","keyword":"thermal expansion","originalKeyword":"thermal expansion"},{"id":"cccea9ff-3ceb-4276-bcc8-4577e801d57d","keyword":"dimensional stability","originalKeyword":"dimensional stability"}],"language":"zh","publisherId":"0412-1961_2009_1_6","title":"2D Cf/Mg-2.0Re-0.2Zr复合材料的尺寸稳定性","volume":"45","year":"2009"},{"abstractinfo":"采用压力浸渗法制备碳纤维织物(2D Cf)及单向碳纤维(1D Cf)增强镁合金复合材料,测试丁两种复合材料在50-350℃范围内的热膨胀行为.结果表明,2D Cf/镁合金复合材料(简称2D)平面内不同方向的平均热膨胀系数均随温度升高不断降低.从50到350℃,0°/90°方向的甲均热膨胀系数由4.03×10-6℃-1降至1.83×10-6℃-1;45°方向的平均热膨胀系数由4.53×10-6℃-1降至2.31×10-6℃-1.根据推导公式可以准确计算2D增强复合材料20-150℃范围内0°/90°方向的平均热膨胀系数.20~150℃热循环测试结果表明,2D复合材料具有较好的尺寸稳定性,在热循环过程中存在应变滞后现象,其残余塑性变形主要是基体合金在热应力作用下产生的塑性变形,并且从第2次热循环起,复合材料在热循环中产生的净应变不随热循环次数增加而变化.","authors":[{"authorName":"宋美慧","id":"12605add-587a-4d33-9e4d-44dab230ec0d","originalAuthorName":"宋美慧"},{"authorName":"宋坚","id":"300e59f5-0071-4b88-9659-14ac05aab82a","originalAuthorName":"宋坚"},{"authorName":"陈国钦","id":"8ee47162-d210-4f3d-afda-e092c667276b","originalAuthorName":"陈国钦"},{"authorName":"王宁","id":"0d63e1e9-ae96-43c4-954e-8fb50d5efd50","originalAuthorName":"王宁"},{"authorName":"武高辉","id":"a0646ddd-8a5d-4c2d-ad7e-e1510c8324fc","originalAuthorName":"武高辉"}],"doi":"10.3321/j.issn:0412-1961.2009.01.020","fpage":"119","id":"bb77283b-35ac-4d4d-8625-4c0acfa9a35f","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"70ecca1e-d1f7-4a2a-a3d1-53fb253ce528","keyword":"碳纤维织物/Mg-2.0Re-0.2Zr合金复合材料","originalKeyword":"碳纤维织物/Mg-2.0Re-0.2Zr合金复合材料"},{"id":"53b5bef8-8fe9-4ad5-b78e-0fb35aa43767","keyword":"热膨胀","originalKeyword":"热膨胀"},{"id":"7e2790da-e87e-4700-8958-76f3e1edafc1","keyword":"尺寸稳定性","originalKeyword":"尺寸稳定性"}],"language":"zh","publisherId":"jsxb200901020","title":"2D Cf/Mg-2.0Re-0.2Zr复合材料的尺寸稳定性","volume":"45","year":"2009"}],"totalpage":7571,"totalrecord":75709}