{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"报道了利用VLS生长机制,在NH3气氛中,由配合物GaCl3·NH3在高温下热分解反应成功制备了GaN纳米线,利用X射线衍射(XRD)、高分辨电镜(HRTEM)、X射线能谱(EDS)等分析手段对产物进行了表征,并对氮化镓纳米线的VLS生长机理进行了探讨.","authors":[{"authorName":"展杰","id":"8bdb25b0-1725-473a-ae52-9b221ffd1da4","originalAuthorName":"展杰"},{"authorName":"郝霄鹏","id":"e1ceba21-70d0-4f79-b01b-5bfcb361f83e","originalAuthorName":"郝霄鹏"},{"authorName":"吴拥中","id":"7e96eb0a-2fe9-42b8-9398-6b866c9bb2b9","originalAuthorName":"吴拥中"},{"authorName":"温树林","id":"7aa44c9c-d602-4d36-a416-0a2bcc3f146f","originalAuthorName":"温树林"},{"authorName":"蒋民华","id":"c2e3ae91-2e26-4c42-81d9-30eb02d68434","originalAuthorName":"蒋民华"}],"doi":"","fpage":"714","id":"5a66df99-fefe-425f-99f2-66d10321a6aa","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"4c801b11-48eb-430f-8d6a-d8662eafa2d5","keyword":"氮化镓","originalKeyword":"氮化镓"},{"id":"2fcc8584-ae30-4bd0-bbca-d43fc4d29573","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"c3555ef8-6eaa-4197-8734-3bb1589206ed","keyword":"VLS机制","originalKeyword":"VLS机制"},{"id":"b9cf9018-cf72-4a82-a9ca-1f46a29ab29a","keyword":"表征","originalKeyword":"表征"},{"id":"c2c7a3b6-fd26-4f80-8144-fd46deaf5692","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"gncl200505022","title":"配合物热分解制备氮化镓纳米线及其生长机理研究","volume":"36","year":"2005"},{"abstractinfo":"通过简单化学气相反应法,在1300℃下合成出大量SiC纳米棒产物,着重研究了Fe催化条件下该SiC纳米棒的生长机制.采用数码相机、立式显微镜、场发射扫描电镜、能谱分析仪、透射电镜、选区电子衍射仪、高分辨透射电镜及X射线粉末衍射仪对产物的宏观产量、微观形貌、化学成分及晶体结构进行了表征.结果表明,石墨基片上生成1层较厚的浅蓝色产物,产量达克量级,产物由均匀的纳米棒组成,直径约100nm,长达几微米,具有立方β-SiC晶体结构.基于Fe-C-Si三元合金相变原理及传统的VLS机制,首次提出一种周期性的气-液-固(Periodic-VLS)生长模型对SiC纳米棒的形成过程进行了详细讨论.","authors":[{"authorName":"李镇江","id":"e91d0f51-6da9-4f1a-bfef-c7d3cef99385","originalAuthorName":"李镇江"},{"authorName":"高卫东","id":"4fb9fe79-9bbf-4740-9a3a-e58b23ce6864","originalAuthorName":"高卫东"},{"authorName":"孟阿兰","id":"1ec4351a-c7f9-45c3-b6a7-47f203945f5d","originalAuthorName":"孟阿兰"},{"authorName":"李迎春","id":"11dc96e3-6323-4145-883a-7fd5df13d021","originalAuthorName":"李迎春"}],"doi":"","fpage":"1549","id":"88c3baa4-da25-43c2-89fc-9dfebc4e0457","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3695bfb4-2ab8-445b-8352-f6f5110f293c","keyword":"SiC纳米棒","originalKeyword":"SiC纳米棒"},{"id":"50317d1d-d7ac-45e8-9a2c-76ab1e9c34f0","keyword":"宏观产量","originalKeyword":"宏观产量"},{"id":"343d60be-5a90-4c7e-961d-4c0fe156994f","keyword":"合金相变","originalKeyword":"合金相变"},{"id":"a1c49e5b-4334-4c56-a2bc-e6883bd60369","keyword":"VLS","originalKeyword":"VLS"}],"language":"zh","publisherId":"gncl200909040","title":"基于Fe催化条件下周期性VLS机制大量合成SiC纳米棒的研究","volume":"40","year":"2009"},{"abstractinfo":"采用化学气相沉积方法,以Ni薄膜为催化剂,CH4、SiH4为反应气体,H2为载气,成功地在Si基片上生长出β-SiC晶须.运用X射线衍射和扫描电子显微镜系统地研究了不同催化剂厚度对SiC晶须形貌、结构和化学成分的影响.","authors":[{"authorName":"陈一峰","id":"35d32ed1-bb18-496f-a954-1356676e92a8","originalAuthorName":"陈一峰"},{"authorName":"刘兴钊","id":"f092da6d-53c7-4b5e-afe0-cbacc0fbda7f","originalAuthorName":"刘兴钊"},{"authorName":"邓新武","id":"2dab71f4-f4c9-494a-8ba9-47a802f729db","originalAuthorName":"邓新武"}],"doi":"","fpage":"89","id":"c0f5f86d-16fe-4e4d-9bfa-91768cfdf11a","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bbdd6791-936c-4154-9245-503b85f772d1","keyword":"SiC","originalKeyword":"SiC"},{"id":"6943bab7-f993-4da4-ae03-68ec6d34d1ba","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"40d00e83-86ae-4a00-9bc8-039cb5089250","keyword":"晶须","originalKeyword":"晶须"}],"language":"zh","publisherId":"cldb2010z1027","title":"VLS机制生长SiC晶须研究","volume":"24","year":"2010"},{"abstractinfo":"碳化硅(SiC)是第三代宽禁带半导体材料,在高温、高频、高功率、光电子及抗辐射等方面具有巨大的应用潜力.以CH4、SiH4为反应气体,H2为载气,采用化学气相沉积法,利用气-液-固(VLS)生长机理,同质外延6H-SiC薄膜.结果表明,VLS机制能在外延薄膜的表面有效地封闭微管,但是由于n(C)/n(Si)较大,薄膜表面存在大量的台阶.为了进一步改善薄膜表面形貌,采用\"两步法\"工艺外延SiC薄膜,在封闭微管的同时提高了表面平整度,得到了质量较好的6H-SiC外延薄膜.","authors":[{"authorName":"陈一峰","id":"b7d58b27-6a3b-4822-aed6-b110b18b61e8","originalAuthorName":"陈一峰"},{"authorName":"刘兴钊","id":"25e2b05d-b946-4c4b-ab47-318da7203999","originalAuthorName":"刘兴钊"},{"authorName":"邓新武","id":"ebb626dd-ff39-4102-b37a-cb27dcafa91c","originalAuthorName":"邓新武"}],"doi":"","fpage":"1","id":"ca7169b0-f496-4e68-a9eb-3399cb2965be","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0a0d7e34-37d9-4897-86ad-228cedbb9cd7","keyword":"6H-SiC","originalKeyword":"6H-SiC"},{"id":"373a47e5-b0fd-4d20-a2f0-c473a759fd39","keyword":"同质外延","originalKeyword":"同质外延"},{"id":"7ca881f8-9b77-44ed-b97d-bc4c13cc6992","keyword":"气-液-固生长机理","originalKeyword":"气-液-固生长机理"}],"language":"zh","publisherId":"cldb201014001","title":"VLS同质外延6H-SiC薄膜生长的研究","volume":"24","year":"2010"},{"abstractinfo":"在1500℃、1600℃、1650℃和1750℃氩气中保温3 h,使Fe-Si在石墨基板上熔化并敷展,分别在熔层表面获得SiC颗粒层、SiC颗粒与晶须混合层、SiC晶须层和SiC腾空薄膜.XRD分析确定所有产物均为3C-SiC;TEM和SAED分析表明,SiC晶须为3C-SiC单晶,生长方向为[111].基于上述结果,提出不同温度下C与熔体中的Si经不同反应路径,生成不同形貌SiC的反应机理:低温时(≤1500℃),Fe提高了熔体中C的饱和溶解度,以液-固(LS)反应生成SiC颗粒;较高温度时(1500~1750 ℃),借助Fe的催化作用,以气-液-固(VLS)机理生成SiC晶须;更高温度时(≥1750℃),气-液-固(VLS)变得无序,生成SiC腾空连续膜.","authors":[{"authorName":"翟蕊","id":"41b41e9c-852b-427d-b091-1d05a0ccf3b0","originalAuthorName":"翟蕊"},{"authorName":"杨光义","id":"58657ad8-3400-4e20-844b-5c747a39ea16","originalAuthorName":"杨光义"},{"authorName":"吴仁兵","id":"51fd0d13-2e6d-4684-ab56-467cd09d2ed0","originalAuthorName":"吴仁兵"},{"authorName":"陈建军","id":"fae1001c-2a4b-4ab1-847e-d5fd164e6ae7","originalAuthorName":"陈建军"},{"authorName":"林晶","id":"8f7418f8-a340-44cb-bb2a-fad77597109c","originalAuthorName":"林晶"},{"authorName":"吴玲玲","id":"f8c255b9-8f43-497d-949c-bbcb67448ae3","originalAuthorName":"吴玲玲"},{"authorName":"潘颐","id":"abf40b2e-012d-46ae-9a39-4cacfa7bddb2","originalAuthorName":"潘颐"}],"doi":"10.3321/j.issn:1000-3851.2007.05.018","fpage":"97","id":"fedfffd0-4033-4e54-99fb-46d4bbc74d86","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"bfe9d78d-e650-4830-9040-8b6b341adf97","keyword":"SiC晶须","originalKeyword":"SiC晶须"},{"id":"46d47eca-e4e4-4741-b0d6-37dffa3a0240","keyword":"液相法","originalKeyword":"液相法"},{"id":"8511d55a-22ca-43db-b276-da75433b1a19","keyword":"VLS生长机理","originalKeyword":"VLS生长机理"}],"language":"zh","publisherId":"fhclxb200705018","title":"FeSi熔体中SiC晶须的VLS生长","volume":"24","year":"2007"},{"abstractinfo":"针对铝合金直接氮化生长AlN过程中的晶体生长过程进行分析,通过X-ray衍射和SEM观察,获得了不同生长阶段AlN晶体的生长特征,研究了铝合金直接氮化生长氮化铝的反应机制. 提出了一种气-液-固-固)晶体生长机制,简称VLSS机制,并着重对VLSS机制的实现条件、实现过程以及与传统的VLS晶体生长机制的相同点和差异进行了讨论.","authors":[{"authorName":"金海波","id":"af95939c-72c4-45ae-ada3-00c90486978d","originalAuthorName":"金海波"},{"authorName":"陈克新","id":"a7321c68-6125-4304-b95e-51b743ad56c3","originalAuthorName":"陈克新"},{"authorName":"周和平","id":"9b1b6f74-bbb6-4946-b5a8-f5aa74b04da0","originalAuthorName":"周和平"},{"authorName":"王群","id":"e8de92d3-4fae-4559-8c5e-5a7dddff1978","originalAuthorName":"王群"},{"authorName":"王文忠","id":"ea406bd9-263d-4f63-aa1f-e451af6ba593","originalAuthorName":"王文忠"}],"doi":"10.3321/j.issn:1000-324X.2000.04.010","fpage":"631","id":"98534023-0329-4c44-ba63-734ff3bd49f7","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0e3b51c2-8d26-4da3-ba4e-3430cc8496f3","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"fd5b2c04-3dd7-4dfe-a68a-d94cc7d199fb","keyword":"直接氮化","originalKeyword":"直接氮化"},{"id":"4996eb74-aa40-40d3-bf41-d01a40bfc552","keyword":"氮化铝","originalKeyword":"氮化铝"},{"id":"c6f3c4bc-8d2d-4096-8340-99a0dcdcc559","keyword":"生长机制","originalKeyword":"生长机制"}],"language":"zh","publisherId":"wjclxb200004010","title":"铝合金直接氮化生长氮化铝反应机制研究","volume":"15","year":"2000"},{"abstractinfo":"以β-SiAION粉料为晶种,SiC为基体,加入Si粉、AI粉和Al2O3粉在1900 K氮气气氛下合成β-SiAlON晶须,研究了晶须的显微结构、相组成和晶须增韧SiC复合材料的力学性能,并结合热力学研究了晶须的生长机制.结果表明:(1)以β-SiAlON粉料为诱导晶种时可以合成β-SiMON晶须材料,其生长机制VLS机制和VS机制;(2)当以VLS机制生长时,晶须合成z值为1.56,直径约为200 -300nm,呈柱状和纤维状,当以VS机制生长时,晶须合成z值为1.76,直径为0.5~1.5 μm,呈柱状和竹节状,发育较为规则;(3)晶须相可有效提高复合材料的力学性能,相同组成的复合材料中,当β-SiAlON晶须相的含量较高时,材料可以在气孔率较高(32.1%)条件下获得了较好的抗折强度(55.2 MPa).","authors":[{"authorName":"岳昌盛","id":"4ad2c21b-2b4e-48db-9b60-ac42780131d1","originalAuthorName":"岳昌盛"},{"authorName":"彭犇","id":"f6f80476-c1db-4a30-9adc-459baffbf509","originalAuthorName":"彭犇"},{"authorName":"郭敏","id":"d8427c67-795b-4164-b941-8ed4a04f4dc2","originalAuthorName":"郭敏"},{"authorName":"张梅","id":"a04519b7-cbbd-468d-8a0f-f174d440f729","originalAuthorName":"张梅"}],"doi":"","fpage":"1181","id":"dc8f0e91-dfcf-47a3-9f32-9e94b349e995","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f1c0cf84-cb95-4c70-86f2-6976611eabd5","keyword":"β-SiAlON晶须","originalKeyword":"β-SiAlON晶须"},{"id":"4d2e187e-859d-448d-b277-311220128891","keyword":"生长机制","originalKeyword":"生长机制"},{"id":"c716d392-9951-4fc9-8700-afeaed9cdf84","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"c407fe01-27b4-49c8-8deb-03e0e3f70b84","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"rgjtxb98201105019","title":"β-SiAlON晶须的诱导合成和生长机制研究","volume":"40","year":"2011"},{"abstractinfo":"激励机制是企业人本管理的一项重要内容.文中浅析了当前企业激励机制存在的问题,并从物质激励、精神激励等方面结合三鑫公司的实际简述了企业激励机制的建立及实施.","authors":[{"authorName":"毛怀春","id":"d36df278-9eed-4410-933f-c6ef988757e9","originalAuthorName":"毛怀春"},{"authorName":"齐军管","id":"9d503025-dcc0-49dc-b9e3-a8e6a7ea752e","originalAuthorName":"齐军管"}],"doi":"10.3969/j.issn.1001-1277.2006.11.001","fpage":"1","id":"bc48b763-c28c-41e9-b68b-ffa67c43cb3b","issue":"11","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"6e43e174-3519-4980-a848-a34507d24f18","keyword":"企业","originalKeyword":"企业"},{"id":"20974dee-1eb4-4bea-8142-14562ad7441a","keyword":"人本管理","originalKeyword":"人本管理"},{"id":"6ffb6890-a508-4ce9-a3c7-19493aa2a1d2","keyword":"激励机制","originalKeyword":"激励机制"}],"language":"zh","publisherId":"huangj200611001","title":"浅谈企业激励机制","volume":"27","year":"2006"},{"abstractinfo":"采用热蒸发纯Zn粉和Cd粉, 在湿反应气氛中氧化制备得到掺Cd的ZnO纳米管, 其Cd含量为3.3at%. 场发射扫描电镜(FESEM)及高分辨透射电镜(HRTEM)分析表明, 大部分纳米管外径约80~150nm, 长度达数微米, 壁厚约20nm. 通过与相同条件下制备的ZnO纳米结构的室温光致发光谱(PL) 进行对比发现, 由于Cd的掺入, Zn1-xCdxO纳米管的紫外近带边峰(UV NBE)从3.26eV红移到3.20eV附近.分析认为,Zn1-xCdxO纳米管遵循气液固(VLS)生长机制, 并在此基础上提出Zn1-xCdxO纳米管生长过程, 同时指出Kirkendall效应可能对纳米管的形成起到了重要作用. ","authors":[{"authorName":"刘勃","id":"56e58305-e995-4ce8-a3d7-526aab108ee0","originalAuthorName":"刘勃"},{"authorName":"王发展","id":"9e5dde44-4564-4e85-b51f-8ff549ac1a4b","originalAuthorName":"王发展"},{"authorName":"张顾钟","id":"16451043-bbb4-4c72-8809-1c3093068880","originalAuthorName":"张顾钟"},{"authorName":"赵超","id":"353ec13e-f8d1-4c70-92bd-5674b4400392","originalAuthorName":"赵超"},{"authorName":"原思聪","id":"4100b764-ce55-4bb4-9888-912aaac540e4","originalAuthorName":"原思聪"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2009.00998","fpage":"998","id":"f444d42d-ec48-40e6-81d7-4823f25c1862","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9878ec65-e74b-4716-9c4d-ba727be1d405","keyword":"Zn1-xCdxO","originalKeyword":"Zn1-xCdxO"},{"id":"2997a589-3bb1-4c20-a950-0705b2729f61","keyword":" nanotube","originalKeyword":" nanotube"},{"id":"7009f68f-620a-4a71-9859-da76bca869bc","keyword":" fabrication","originalKeyword":" fabrication"},{"id":"aa3c4f18-a455-4a5f-91c5-995cfec1ebfa","keyword":" growth process","originalKeyword":" growth process"}],"language":"zh","publisherId":"1000-324X_2009_5_13","title":"热蒸发法制备Zn1-xCdxO纳米管及其生长机制研究","volume":"24","year":"2009"},{"abstractinfo":"采用热蒸发纯Zn粉和Cd粉,在湿反应气氛中氧化制备得到掺Cd的ZnO纳米管,其Cd含量为3.3at%. 场发射扫描电镜(FESEM)及高分辨透射电镜(HRTEM)分析表明,大部分纳米管外径约80~150nm,长度达数微米,壁厚约20nm. 通过与相同条件下制备的ZnO纳米结构的室温光致发光谱(PL) 进行对比发现,由于Cd的掺入,Zn1-xCdxO纳米管的紫外近带边峰(UV NBE)从3.26eV红移到3.20eV附近.分析认为,Zn1-xCdxO纳米管遵循气液固(VLS)生长机制,并在此基础上提出Zn1-xCdxO纳米管生长过程,同时指出Kirkendall效应可能对纳米管的形成起到了重要作用.","authors":[{"authorName":"刘勃","id":"402f9e9c-ae70-44db-8fe8-ed760d6ed716","originalAuthorName":"刘勃"},{"authorName":"王发展","id":"770b0377-eb6b-4e63-8ed5-4772e3fa0dc1","originalAuthorName":"王发展"},{"authorName":"张顾钟","id":"2f2a9331-227c-4aae-a956-09e99bf1eaaf","originalAuthorName":"张顾钟"},{"authorName":"赵超","id":"d09a6908-6441-4818-8a60-986d2c854e9d","originalAuthorName":"赵超"},{"authorName":"原思聪","id":"54df653a-49c8-44fc-8fb8-d8c3905aab39","originalAuthorName":"原思聪"}],"doi":"10.3724/SP.J.1077.2009.00998","fpage":"998","id":"821d65a5-155a-4cd0-9d30-023b11209ac6","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"caa706ae-704c-4f0f-bfd4-138619eb87bf","keyword":"Zn1-xCdxO","originalKeyword":"Zn1-xCdxO"},{"id":"32cc4544-d51a-416c-8f57-e210f93f5298","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"b6669f12-ebe2-4014-97af-ffec313fdfdd","keyword":"制备","originalKeyword":"制备"},{"id":"1279eaac-c786-444a-93c0-e6b86a6a79f5","keyword":"生长过程","originalKeyword":"生长过程"}],"language":"zh","publisherId":"wjclxb200905025","title":"热蒸发法制备Zn1-x Cdx O纳米管及其生长机制研究","volume":"24","year":"2009"}],"totalpage":914,"totalrecord":9133}