{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了微波介质陶瓷改性研究的3种常见方法,即添加助烧剂、离子取代和陶瓷复合化,综述了近几年来系微波介质陶瓷的研究进展.探讨了系微波介质陶瓷研究中存在的问题和未来的发展趋势.","authors":[{"authorName":"丁耀民","id":"28bf7725-cc01-46c8-8576-4b03bf1ca98f","originalAuthorName":"丁耀民"},{"authorName":"代建清","id":"98865b23-e0cf-4f30-a613-f114f1ab32cb","originalAuthorName":"代建清"}],"doi":"","fpage":"15","id":"75918701-766d-4d99-8c81-480a0c116a55","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7c1b444d-ab70-451e-8a43-151597150462","keyword":"","originalKeyword":"铌酸锌"},{"id":"2d475e64-479a-441c-b3eb-c988137f8e06","keyword":"微波介质陶瓷","originalKeyword":"微波介质陶瓷"},{"id":"7021259f-2500-447b-9494-9bb770702c44","keyword":"改性研究","originalKeyword":"改性研究"}],"language":"zh","publisherId":"cldb201105004","title":"系微波介质陶瓷的研究进展","volume":"25","year":"2011"},{"abstractinfo":"介绍了微渡介质陶瓷改性研究的3种常见方法,即添加助烧剂、离子取代和陶瓷复合化.综述了近几年来系微波介质陶瓷的研究进展.探讨了系微波介质陶瓷研究中存在的问题和未来的发展趋势.","authors":[{"authorName":"丁耀民","id":"c9c5bec2-7036-4322-bc4a-3a7cb9025b76","originalAuthorName":"丁耀民"},{"authorName":"代建清","id":"7154581c-72e4-4527-b0bd-ef76dcc6c735","originalAuthorName":"代建清"}],"doi":"","fpage":"15","id":"b88cf868-ddea-4ee5-a45c-7e45875b0873","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c9830da3-4693-4850-a930-64e1b23fa64a","keyword":"","originalKeyword":"铌酸锌"},{"id":"ba349370-f105-469c-b50b-118be542ae84","keyword":"微波介质陶瓷","originalKeyword":"微波介质陶瓷"},{"id":"e95f2611-f8d5-4bd3-aaac-53c2a2acc559","keyword":"改性研究","originalKeyword":"改性研究"}],"language":"zh","publisherId":"cldb201103004","title":"系微波介质陶瓷的研究进展","volume":"25","year":"2011"},{"abstractinfo":"研究了B_2O_3助烧剂对(Zn_0.5Mg_0.5)Nb_2O_6陶瓷的烧结温度、微观结构、相结构及微波介电性能的影响.结果表明,助烧剂B_2O_3的添加有助于降低(Zn_0.5Mg_0.5)Nb_2O_6陶瓷的烧结温度,可以将(Zn_0.5Mg_0.5)Nb_2O_6陶瓷的烧结温度降低到950 ℃.其中掺杂2%B_2O_3(质量分数,下同)的(Zn_0.5Mg_0.5)Nb_2O_6陶瓷,在950 ℃烧结可获得结构致密的烧结体,并且具有较佳的介电性能:ε_r = 20.7,Q×f= 60156 GHz.","authors":[{"authorName":"林旭平","id":"6b329c3f-5d10-45af-887a-50aaa3e2143b","originalAuthorName":"林旭平"},{"authorName":"马景陶","id":"3c6355df-7e21-4acd-9b5c-aed357a80e12","originalAuthorName":"马景陶"},{"authorName":"陈乔","id":"15bf587b-0651-494d-9b20-7863d9fbb868","originalAuthorName":"陈乔"},{"authorName":"张宝清","id":"2c968a2e-f1bf-490a-ab8c-749149454396","originalAuthorName":"张宝清"},{"authorName":"邓长生","id":"b2ed4e35-862d-480e-a953-74264f471883","originalAuthorName":"邓长生"},{"authorName":"周济","id":"c60df78a-1aa6-43d6-8596-3d5bfdc3899a","originalAuthorName":"周济"}],"doi":"","fpage":"395","id":"adaa03e0-311a-4d51-a2d6-04ce463f0adb","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"098147e2-b0e2-40f7-a302-012b3075344a","keyword":"微波介质陶瓷","originalKeyword":"微波介质陶瓷"},{"id":"75714e39-73a5-4c5d-a4a3-c93f70b2d307","keyword":"低温烧结","originalKeyword":"低温烧结"},{"id":"1b26184a-c5d0-4fcd-b5e2-02bf51aee8d9","keyword":"氧化硼","originalKeyword":"氧化硼"},{"id":"4112d3a4-6212-4a57-bca1-fb7cf13feb8b","keyword":"","originalKeyword":"铌酸锌"}],"language":"zh","publisherId":"xyjsclygc2009z2107","title":"B_2O_3添加对(Zn_0.5Mg_0.5)Nb_2O_6陶瓷微波介电性能的影响","volume":"38","year":"2009"},{"abstractinfo":"以Ba0.6Sr0.4TiO3为基体材料,采用传统陶瓷制备工艺,制备了Ba0.6 Sr0.4 TiO3-ZnNb2O6(简称BSTZ)复相微波介质陶瓷.结果表明,BSTZ复相陶瓷可在1200℃烧结成瓷,烧结温度明显低于Ba0.6Sr0.4TiO3陶瓷的烧结温度,并反应生成新相BaNb3.6O10.在室温低频下,随ZnNb2O6含量的增加,BSTZ复相陶瓷的介电常数下降;在1.6kV/mm的直流偏压下,各BSTZ复相陶瓷的可调性随ZnNb2O6添加量增加而减小.","authors":[{"authorName":"王通","id":"02e042cf-501e-4bbd-a360-f5dcc43c2a89","originalAuthorName":"王通"},{"authorName":"高峰","id":"bf5b4cbb-bb5b-4911-a42b-619240bd300b","originalAuthorName":"高峰"},{"authorName":"胡国辛","id":"4bfdd668-09c1-4c09-ade8-aacd7050bc25","originalAuthorName":"胡国辛"},{"authorName":"李真","id":"0848ecf7-839d-483a-943f-b995b690845d","originalAuthorName":"李真"},{"authorName":"田长生","id":"10502ca9-1e69-4092-99aa-97beb3c513bd","originalAuthorName":"田长生"}],"doi":"","fpage":"1309","id":"d9cbea56-e567-4766-99a8-f6881a4a7632","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"4d03ee96-324d-4c0e-a56c-5df58f1d050f","keyword":"钛锶钡","originalKeyword":"钛酸锶钡"},{"id":"53a49999-8098-4e15-8795-8d4b1858bb34","keyword":"","originalKeyword":"铌酸锌"},{"id":"95cb6684-1f5a-458d-9e55-a304215669df","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"6c8242ed-29b1-41c6-a51c-23ce554a7a41","keyword":"可调性","originalKeyword":"可调性"}],"language":"zh","publisherId":"gncl200908020","title":"Ba0.6 Sr0.4 TiO3-ZnNb2O6复相微波介质陶瓷的结构与介电性能研究","volume":"40","year":"2009"},{"abstractinfo":"系统地测试了铅基系列陶瓷PZN-BT-PT(85-10-5,80-10-10,75-10-15)的电致伸缩应变、电滞回线和介电性能研究了它们的电诱应变同极化强度关果结合介电温谱的结果,阐明铁电体微畴、宏畴对铁电陶瓷电致伸缩特性的作用.发现铁电微畴在交流小信号测量中所表现的介电弛豫特征在强场测量中消失,铁电宏畴却表现出相反的特征","authors":[{"authorName":"樊慧庆","id":"464838e1-4275-4674-9c56-01db7974c80f","originalAuthorName":"樊慧庆"},{"authorName":"虞利军","id":"8cf522fe-9129-4ee1-a040-e2493410f049","originalAuthorName":"虞利军"},{"authorName":"张良莹","id":"55512937-ba6a-413b-88df-d673e2707119","originalAuthorName":"张良莹"},{"authorName":"姚熹","id":"221c1cc7-403e-449a-9b4b-5d76f500aa24","originalAuthorName":"姚熹"}],"categoryName":"|","doi":"","fpage":"543","id":"c78ab6e4-07c4-47de-8017-a26e5d2c25be","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"88bd19fd-bf20-448d-b2da-60fff7737b95","keyword":"铁电陶瓷","originalKeyword":"铁电陶瓷"},{"id":"7f4bb884-c7c4-4f26-8186-d5430e9b5608","keyword":"null","originalKeyword":"null"},{"id":"aeb22d0b-d090-4e9d-96d0-9dfb1db6ea77","keyword":"null","originalKeyword":"null"},{"id":"91b2edd9-8ca0-4e33-8063-cc65990c4d45","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_1997_5_10","title":"铅基陶瓷的电致伸缩特性与极化机制","volume":"11","year":"1997"},{"abstractinfo":"以乙酸铅、丙酸、五乙氧基、四丙氧基锆和四正丁氧基钛为原料,用溶胶-凝胶法制备了铅-锆钛铅(PZN-PZT)凝胶纤维.该纤维经热解、烧结后成为直径约25μm的陶瓷纤维.陶瓷纤维的表面和断面形貌的电子扫描图像显示:该陶瓷纤维均匀致密,呈圆柱形.X射线分析表明:烧结温度影响陶瓷的晶相纯度.当烧结温度高于1250℃时,该陶瓷及陶瓷纤维呈现纯净的钙钛矿晶相.阿基米德法测得陶瓷和陶瓷纤维的密度分别为7.70×10akg/m3和7.80×103kg/m3.对陶瓷含量为63%的PZN-PZT陶瓷纤维/环氧树脂1-3复合材料压电片,测得其机电转换常数kt、压电常数d33和相对介电常数ε分别为:0.65、403pC/N和1300.以溶胶-凝胶法制备的超细粉体为原料烧结成的PZN-PZT陶瓷,其κt、daa和ε分别为0.48、600pC/N和2627.","authors":[{"authorName":"李坤","id":"e964d097-88a8-4d8e-bed3-29c582de80a7","originalAuthorName":"李坤"},{"authorName":"曹大呼","id":"bc8ef5f0-17d6-405c-9efc-b555a9af9110","originalAuthorName":"曹大呼"},{"authorName":"李金华","id":"7fcdf2ba-094e-4ef6-942b-9b57ed88b984","originalAuthorName":"李金华"},{"authorName":"陈王丽华","id":"7876dc2d-cb42-4056-8ac0-617418d2dcd9","originalAuthorName":"陈王丽华"}],"doi":"10.3321/j.issn:1000-324X.2005.05.014","fpage":"1099","id":"3d4e6ded-d1f9-465e-942a-f05a879c24f7","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"44d3ca96-1574-4e33-94b5-713b26370316","keyword":"陶瓷纤维","originalKeyword":"陶瓷纤维"},{"id":"4fba8e83-3628-4aa1-a4ee-d67e162eccb9","keyword":"1-3复合材料","originalKeyword":"1-3复合材料"},{"id":"43766fde-c772-4f64-9b76-150380b25634","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"76a6d9d3-fc4f-4bd9-bced-5d5fe706e0e9","keyword":"锆钛铅","originalKeyword":"锆钛酸铅"}],"language":"zh","publisherId":"wjclxb200505014","title":"铅-锆钛铅(PZN-PZT)压电陶瓷和陶瓷纤维的制备","volume":"20","year":"2005"},{"abstractinfo":"通过柠檬酸盐溶胶-凝胶法合成了ZnNb2O6陶瓷粉体,利用XRD、SEM等测试手段研究了合成工艺对粉体粒度的影响.XRD分析结果显示,当柠檬比例为1∶2.5,煅烧温度为700 ℃时所合成的物相为单一铁矿相,Scherrer公式计算结果显示随着合成温度的升高,粉体晶粒尺寸有明显长大的趋势.SEM分析结果显示,随着溶液pH值的增大,合成的ZnNb2O6粉体晶粒尺寸明显减小.pH=9,700 ℃时合成的ZnNb2O6粉体晶粒尺寸为45 nm.","authors":[{"authorName":"张迎春","id":"aaf1d85d-1c76-4ddc-aaed-d1a06c71d209","originalAuthorName":"张迎春"},{"authorName":"周香娜","id":"0fafaca3-6c57-46b0-aff0-6c3c8c1cb7ea","originalAuthorName":"周香娜"},{"authorName":"刘凤海","id":"5bf6dc68-a49a-4140-a813-b21f4288c268","originalAuthorName":"刘凤海"},{"authorName":"王秀","id":"b011cecc-cf10-4ee9-9d25-921460efed90","originalAuthorName":"王秀"}],"doi":"","fpage":"449","id":"971e03d2-47e8-48d3-8f6e-ad5ea14519e8","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"fb3bd070-904d-408e-bafd-7009bdcb144e","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"259c6e36-cffe-4a31-8368-493714c1a17d","keyword":"ZnNb2O6","originalKeyword":"ZnNb2O6"},{"id":"183b6a93-b9a9-4020-9ccf-6d36bbdb9d3a","keyword":"微波介质陶瓷","originalKeyword":"微波介质陶瓷"},{"id":"e4b348a8-1b54-4fa0-b0e8-8b591b57f1a6","keyword":"粉体","originalKeyword":"粉体"}],"language":"zh","publisherId":"xyjsclygc2007z1130","title":"pH值对Sol-Gel法合成陶瓷粉体粒度的影响","volume":"36","year":"2007"},{"abstractinfo":"从电介质的击穿机理出发,用数学方法描述了电极注入电荷被介质捕获的全过程,详细分析了电介质的击穿特性并得出了电击穿现象的理论公式,通过同成分锂晶体和掺锂晶体的极化和击穿实验对理论分析的结果进行了验证,试验现象与理论分析吻合较好.","authors":[{"authorName":"韦伟","id":"77637484-48dd-45b9-b043-5e32a9e87b49","originalAuthorName":"韦伟"},{"authorName":"于建","id":"95a5021b-3a09-425e-8c66-e79e374d6c33","originalAuthorName":"于建"},{"authorName":"纪磊","id":"3a9b8223-94fb-4a43-a291-d1569d86725b","originalAuthorName":"纪磊"},{"authorName":"倪文俊","id":"2262e901-ab90-426f-a3de-f523160d6b2e","originalAuthorName":"倪文俊"},{"authorName":"桑梅","id":"d9f742b8-02ca-4643-984f-30f902599682","originalAuthorName":"桑梅"},{"authorName":"任铁雄","id":"b335c791-659e-47bd-870f-8359d34a55b7","originalAuthorName":"任铁雄"},{"authorName":"李世忱","id":"8cc25c9c-c642-4202-b165-8da9406625b1","originalAuthorName":"李世忱"}],"doi":"10.3969/j.issn.1000-985X.2005.04.014","fpage":"628","id":"be4c539c-6fef-4187-9ecf-67a71c88ed6a","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ac1bbf83-69c5-41f6-9322-dab9ee374ee4","keyword":"准相位匹配","originalKeyword":"准相位匹配"},{"id":"4db1b7c5-69e1-44de-9993-3fadf5c372ef","keyword":"锂晶体","originalKeyword":"铌酸锂晶体"},{"id":"852baef5-89f0-4dfa-8e26-1d2dcc5b3db2","keyword":"外加电场极化","originalKeyword":"外加电场极化"},{"id":"d53f70db-687f-423c-8b7d-9dcbe9f77059","keyword":"电击穿","originalKeyword":"电击穿"},{"id":"0f33feed-44e6-44ef-a11e-a45a3af3e024","keyword":"电介质","originalKeyword":"电介质"}],"language":"zh","publisherId":"rgjtxb98200504014","title":"锂晶体电击穿特性的研究","volume":"34","year":"2005"},{"abstractinfo":"近年来,锂晶体由于其自身所具有的多种优异性能和巨大的应用前景而受到了人们的广泛关注,但生长出满足不同市场要求的高质量锂单晶体比较困难.本文从晶体生长技术的角度综述了锂单晶体不同的生长方法以及各自的特点,并分析了在生长锂晶体时出现的一些问题.","authors":[{"authorName":"张旭","id":"9a6cca66-f8e9-4619-b985-44352dbee9e6","originalAuthorName":"张旭"},{"authorName":"薛冬峰","id":"fc919d6a-0875-4676-9ac7-9771b90e92a5","originalAuthorName":"薛冬峰"},{"authorName":"","id":"2f830ae6-fe1a-4c20-9122-b6c52b06de1c","originalAuthorName":""}],"doi":"10.3969/j.issn.1000-985X.2005.04.032","fpage":"720","id":"08495aa4-8429-4bbf-9da3-864eca4f276e","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"0e49968c-5c9b-4b45-9061-3296df2b9936","keyword":"锂","originalKeyword":"铌酸锂"},{"id":"a8938c22-fc7b-4242-a653-f0dba29a7eab","keyword":"晶体生长","originalKeyword":"晶体生长"},{"id":"f67724b6-d909-4ea7-aeeb-f1e62aa57cce","keyword":"化学计量比","originalKeyword":"化学计量比"}],"language":"zh","publisherId":"rgjtxb98200504032","title":"锂晶体的生长研究","volume":"34","year":"2005"},{"abstractinfo":"锂(LN)晶体由于本身优越的特性得到极其广泛的应用,本文介绍了LN晶体在生长、应用和在光通信方面最新进展以及LN晶体的市场前景.","authors":[{"authorName":"王忠敏","id":"58b315e8-74f0-4e8e-8950-04ea4b4428d9","originalAuthorName":"王忠敏"}],"doi":"10.3969/j.issn.1000-985X.2002.02.022","fpage":"173","id":"24594abb-8d53-4ffc-911a-2f739b35d0aa","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c07cb3f6-3437-49d3-9830-068b3f30d2b8","keyword":"锂","originalKeyword":"铌酸锂"},{"id":"1e2b4aa4-c320-4773-b092-6a1d2ddfa120","keyword":"提拉法","originalKeyword":"提拉法"},{"id":"302e5c1b-7810-47f6-b7e8-74ad89aa7e34","keyword":"同成份","originalKeyword":"同成份"},{"id":"e5402fff-6752-4401-bbc8-3e5cb095c6e8","keyword":"化学计量比","originalKeyword":"化学计量比"},{"id":"9396b603-2720-4a03-8f78-617095e2a688","keyword":"光通信","originalKeyword":"光通信"},{"id":"4bce7c7d-ff60-47fa-9e41-7544cf7e8210","keyword":"全息存储","originalKeyword":"全息存储"},{"id":"c41e25e6-ce95-4617-b4b4-417c70125240","keyword":"光电聚合物","originalKeyword":"光电聚合物"},{"id":"3ac3995d-1d13-49bf-a520-f1f2ca6ac316","keyword":"光集成","originalKeyword":"光集成"}],"language":"zh","publisherId":"rgjtxb98200202022","title":"锂晶体的发展简况","volume":"31","year":"2002"}],"totalpage":1861,"totalrecord":18605}