{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"运用系统节能理论,通过对宣实际生产中的能耗和物流分析,提出了降低宣工序能耗的措施及工序节能效果.根据宣实际生产流程做出了基准物流图,通过基准物流图与实际物流图的对比计算和分析,得知物流不合理分配是造成宣能耗较高的主要原因;降低企业能耗,必须重视对宣现有物流的合理调整,尤其是对炼铁工序比系数的调整;只有降低铁比,才能根本改变宣能耗较高的现状.","authors":[{"authorName":"李贵阳","id":"9b564376-23f2-40da-a727-c3cd18ebe2bf","originalAuthorName":"李贵阳"},{"authorName":"张树星","id":"f376b80a-93bb-4761-b769-e6341977c65e","originalAuthorName":"张树星"},{"authorName":"李豪杰","id":"fac4ccb1-d33c-436a-a950-55cfa8dc813f","originalAuthorName":"李豪杰"},{"authorName":"杨卫东","id":"9bd77804-e73e-465d-99cc-7e2e1ec9c59f","originalAuthorName":"杨卫东"},{"authorName":"王书桓","id":"0e6feb5d-c89e-48ac-a679-641c761cd2ad","originalAuthorName":"王书桓"},{"authorName":"郭华","id":"bf7618c7-c7b8-4a21-96ad-1abe177f7304","originalAuthorName":"郭华"},{"authorName":"王硕明","id":"40e01acc-5323-48c0-9025-956f66ffd357","originalAuthorName":"王硕明"},{"authorName":"陈连生","id":"ae9983cb-b1cf-4e1b-98be-6bd1b15cb994","originalAuthorName":"陈连生"}],"doi":"","fpage":"74","id":"e5e5176a-815b-4066-84f2-d0d6e40d9d45","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"98a693f2-c105-4c77-8ee6-3ce1719d2b37","keyword":"系统节能","originalKeyword":"系统节能"},{"id":"d1999fc9-1b0c-4452-8908-447a9c1589b0","keyword":"e-p分析法","originalKeyword":"e-p分析法"},{"id":"8deb8c5f-262b-4033-be9d-aa2239e79603","keyword":"基准物流图","originalKeyword":"基准物流图"},{"id":"0a128741-bedd-4665-a2d6-cc6b8bcb34d3","keyword":"铁比","originalKeyword":"铁钢比"},{"id":"1395c894-1fb6-482f-a876-0c44e67f257c","keyword":"综合能耗","originalKeyword":"吨钢综合能耗"}],"language":"zh","publisherId":"gt200306020","title":"实际物流下能耗及节能潜力的计算分析","volume":"38","year":"2003"},{"abstractinfo":"中国钢铁行业面临着资源能源短缺、市场盈利下降和生态环境制约三个方面的压力与挑战,在低碳循环经济成为当前社会发展主趋势的情况下,钢铁企业需要向低碳、绿色生产的方向转型升级。以京唐钢铁公司2015年上半年的生产调研为基础,计算京唐钢铁公司生产过程的能耗、CO2排放情况,并对钢铁生产过程能量流运行、废弃物处理与能源转换情况进行分析,为其他钢铁企业减少CO2排放、节约能源、保护环境提供一个参照。研究表明,京唐钢铁公司综合能耗为604.5 kg,CO2排放为2.165 t,与产品结构相类似的宝钢和武钢相比,能耗水平位于行业先进水平;基于钢铁生产的能量流分析表明,京唐钢铁公司通过采用干熄焦发电、煤气干法除尘、TRT余压发电等先进技术,实现余热余能回收136.26 kg,余热余能回收率为48.31%,高出全国平均水平10.89%;京唐钢铁公司基于循环理念,建立高效的煤气-电能转换中心和余热蒸汽回收利用中心,基本实现了煤气资源、固体废弃物资源、水资源的循环利用与废水零排放,生产过程中SO2、NO2、粉尘的全面达标排放。","authors":[{"authorName":"刘宏强","id":"de214f2f-01cc-4547-afa8-a27423a4fdda","originalAuthorName":"刘宏强"},{"authorName":"张福明","id":"d6964ee6-71e0-407c-b116-a03f301cd4da","originalAuthorName":"张福明"},{"authorName":"刘思雨","id":"674fd16b-e349-4305-a433-739dace05f6e","originalAuthorName":"刘思雨"},{"authorName":"付建勋","id":"74012735-bba3-4b41-b194-a2af7820cb03","originalAuthorName":"付建勋"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160208","fpage":"80","id":"1d78a104-629d-487b-a15b-dd0edce2faaf","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d48c95d1-5d2d-475c-ab58-152dd11adb00","keyword":"绿色低碳生产流程","originalKeyword":"绿色低碳生产流程"},{"id":"de8e7e1a-ada3-48a2-bcdd-531458992fd7","keyword":"综合能耗","originalKeyword":"吨钢综合能耗"},{"id":"05a264a9-1d77-4074-8193-6f6c422986c5","keyword":"CO2排放","originalKeyword":"CO2排放"},{"id":"d47468e8-5ccc-4a75-a552-1cc4ccda008f","keyword":"余热余能回收","originalKeyword":"余热余能回收"},{"id":"4f6b76e6-4960-4940-a9cd-0daef434c5d2","keyword":"废弃物处理","originalKeyword":"废弃物处理"}],"language":"zh","publisherId":"gt201612017","title":"首钢京唐钢铁公司绿色低碳钢铁生产流程解析","volume":"51","year":"2016"},{"abstractinfo":"随着钢铁市场竞争的日益激烈与行业整体利润率的下滑,如何在不影响产品质量的前提下节能减耗已经成为现场技术攻关的焦点.为满足冷轧生产的需求,提高产品的竞争力,充分考虑到冷连轧机组的设备与工艺特点,在建立了一套电耗计算模型并分析了电耗影响因素的基础上,从轧制规程、乳化液流量、轧制速度的综合优化设定入手,以降低电耗为目标,同时考虑到机组最大轧制压力、最大轧制功率、打滑与热滑伤的防治、乳化液最大流量、乳化液综合成本、产能效益等因素的约束,提出了一套冷连轧过程效益综合控制技术,并将其推广应用到生产实践,在乳化液消耗没有增加、产能没有下降的前提下,电耗平均下降了7.53%,为机组创造了较大的经济效益,具有进一步推广应用价值.","authors":[{"authorName":"白振华","id":"340e1c82-52ac-46ec-b1e6-d60695fa8735","originalAuthorName":"白振华"},{"authorName":"乔旋","id":"f96f4781-ed12-4bc2-a6e2-54d65ed40869","originalAuthorName":"乔旋"},{"authorName":"钱承","id":"949aa0a4-60a2-4bd8-b121-acbad1f03b74","originalAuthorName":"钱承"},{"authorName":"刘亚星","id":"ea31781f-f73a-47d3-9e36-8a0269d3787e","originalAuthorName":"刘亚星"},{"authorName":"张君","id":"aae8d167-03ee-4b72-9c6d-d08e7926a56c","originalAuthorName":"张君"},{"authorName":"华长春","id":"53cfa4af-08f2-4e42-84ba-ca133a4672f7","originalAuthorName":"华长春"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150332","fpage":"124","id":"37fa0b13-e4b8-4c4c-b343-a0f70bf18f23","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6b55286b-c5b4-46b2-895a-4c7ba4fcaf15","keyword":"冷连轧","originalKeyword":"冷连轧"},{"id":"d853d94f-cbb0-462d-87dc-d6d7e79af55a","keyword":"电耗","originalKeyword":"吨钢电耗"},{"id":"23737633-1b99-4e43-b429-e42a8e36a98c","keyword":"轧制规程","originalKeyword":"轧制规程"},{"id":"ce016d9b-c445-435a-9982-8d11452507aa","keyword":"乳化液流量","originalKeyword":"乳化液流量"},{"id":"17dae3d5-7135-46a9-8e4c-5dc441f7fd49","keyword":"轧制速度","originalKeyword":"轧制速度"}],"language":"zh","publisherId":"gt201512023","title":"冷连轧机组电耗综合控制技术","volume":"50","year":"2015"},{"abstractinfo":"钢铁在工业领域里是耗水和排污大户,钢铁企业的节水减排势在必行.运用物质流分析跟踪观察模型构建钢铁企业的水流模型,依此分析综合水耗的构成;借鉴系统节能理论,建立钢铁企业综合水耗的w-p模型,在此基础上提出钢铁工业综合水耗的w-p分析方法.以中国某大型钢铁综合企业为例,分析工序水耗变化和比系数变化对综合水耗的影响,结果表明,降低各工序的工序水耗是降低钢水耗的主要影响因素,并指出随着钢铁企业结构的调整和技术水平的进步,降低工序水耗是钢铁企业节水减排的主要研究趋势.通过模型分析及案例研究得到降低综合水耗的方向及措施.","authors":[{"authorName":"仝永娟","id":"4cdf662f-be7b-4acb-83ba-8336d7cc1338","originalAuthorName":"仝永娟"},{"authorName":"蔡九菊","id":"59c92dfc-e951-42f9-9e9d-5464492e36db","originalAuthorName":"蔡九菊"},{"authorName":"王连勇","id":"e7d4859e-67d3-4cf0-a504-52258e00634b","originalAuthorName":"王连勇"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150391","fpage":"82","id":"156bd703-8ff0-4188-bc21-ae2292ca1525","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a6f838ba-9cfc-4761-86e9-a0960dac548b","keyword":"钢铁综合企业","originalKeyword":"钢铁综合企业"},{"id":"7762bb9a-d6b2-40d0-b17e-8f11743ee5f2","keyword":"水流模型","originalKeyword":"水流模型"},{"id":"b0d3abcf-c108-4118-b6b7-e0594c73a0df","keyword":"综合水耗","originalKeyword":"综合水耗"},{"id":"45fa5eb6-4657-4580-ac03-a5ee90818365","keyword":"工序水耗","originalKeyword":"工序水耗"},{"id":"cf02f56c-f891-4050-af2b-76692a7f69de","keyword":"w-p分析","originalKeyword":"w-p分析"}],"language":"zh","publisherId":"gt201606013","title":"钢铁综合企业的水流模型及综合水耗分析","volume":"51","year":"2016"},{"abstractinfo":"为深入挖掘邢节能潜力,以e-p分析法为理论基础,建立了适合邢能耗瓶颈诊断模型。应用能耗瓶颈诊断模型,通过分解综合能耗能耗强度与产品结构系数,分析了总生产流程、各生产区域和各工序的能耗瓶颈,确定了影响综合能耗的因素,指出了下一步邢的节能工作方向。","authors":[{"authorName":"甄云璞","id":"c76c80b8-fdeb-4312-b8a1-4a6627bd058e","originalAuthorName":"甄云璞"},{"authorName":"","id":"ba5622a0-46e2-49fb-b5bf-69a78b2a5b9b","originalAuthorName":""},{"authorName":",孔俊其","id":"9bfed267-1a38-4ce1-8e55-71b64613a462","originalAuthorName":",孔俊其"},{"authorName":",苍大强,宋海生","id":"45807e25-d804-47c2-91d1-d772d570dce9","originalAuthorName":",苍大强,宋海生"},{"authorName":",孙家舵","id":"f129aefd-a457-483f-87b9-a457bdf568c0","originalAuthorName":",孙家舵"},{"authorName":",张志辉","id":"743fa042-a31f-4ae7-8a6e-be8ec05975c4","originalAuthorName":",张志辉"}],"categoryName":"|","doi":"","fpage":"84","id":"579ef0e8-b0b5-4ec2-b620-0e7e5e570839","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2ee3c8b9-db58-471b-8ceb-3b26052b9212","keyword":"节能 ","originalKeyword":"节能 "},{"id":"da4a4083-d666-4158-8ab6-cb546f37e035","keyword":" energy consumption of crude steel ","originalKeyword":" energy consumption of crude steel "},{"id":"b6668c8f-23cc-4d4e-9e72-356beaf63aa7","keyword":" energy-consumption bottleneck ","originalKeyword":" energy-consumption bottleneck "},{"id":"690ad7f9-999d-4719-a9b8-9faee36ef80c","keyword":" decomposition model ","originalKeyword":" decomposition model "},{"id":"6153c5eb-787b-4f6f-8df3-f317e9240987","keyword":" energy-intensity","originalKeyword":" energy-intensity"}],"language":"zh","publisherId":"0449-749X_2012_9_15","title":"能耗瓶颈诊断模型在邢的应用","volume":"47","year":"2012"},{"abstractinfo":"为深入挖掘邢节能潜力,以e-p分析法为理论基础,建立了适合邢能耗瓶颈诊断模型.应用能耗瓶颈诊断模型,通过分解综合能耗能耗强度与产品结构系数,分析了总生产流程、各生产区域和各工序的能耗瓶颈,确定了影响综合能耗的因素,指出了下一步邢的节能工作方向.","authors":[{"authorName":"甄云璞","id":"33d3b8df-b544-44cf-8a2e-86e66e8fca08","originalAuthorName":"甄云璞"},{"authorName":"孔俊其","id":"5990091c-1a1c-4882-89e3-13dc53d8d976","originalAuthorName":"孔俊其"},{"authorName":"苍大强","id":"39f0f6a6-6b11-464f-abe0-3e783a61ddcf","originalAuthorName":"苍大强"},{"authorName":"宋海生","id":"9042618d-e3a3-476a-aa95-70e393e6245b","originalAuthorName":"宋海生"},{"authorName":"孙家舵","id":"7e9264f8-03ea-4643-aeaa-0f67c2b90880","originalAuthorName":"孙家舵"},{"authorName":"张志辉","id":"896ea058-175e-46dd-981f-6f06f13247bc","originalAuthorName":"张志辉"}],"doi":"","fpage":"84","id":"d25a1c99-bbec-42d8-aea7-90b90d40f7b8","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"bb40833a-fe9a-4098-a673-e85631ae10dd","keyword":"节能","originalKeyword":"节能"},{"id":"51e68efe-ffd7-478a-abb4-fcc562c65c06","keyword":"能耗","originalKeyword":"吨钢能耗"},{"id":"661c865e-b6ce-4f08-88a0-c5a69d56f1e8","keyword":"能耗瓶颈","originalKeyword":"能耗瓶颈"},{"id":"6d7516d3-e5d5-4900-8f30-524359c0630b","keyword":"能量分解模型","originalKeyword":"能量分解模型"},{"id":"db7d570c-3eee-455d-a94c-45e2503b0774","keyword":"能量密度","originalKeyword":"能量密度"}],"language":"zh","publisherId":"gt201209017","title":"能耗瓶颈诊断模型在邢的应用","volume":"47","year":"2012"},{"abstractinfo":"对于无缝钢管穿孔生产,穿孔效率和穿孔能耗是衡量生产的两个重要指标.但由于其影响因素复杂,难以建立机制模型,放难以实现对其模型的综合优化.为实现穿孔效率和穿孔能耗综合优化,根据穿孔生产工艺将穿孔过程分成3个部分,提出了基于均值子时段MICR方法的穿孔效率和穿孔能耗的预报模型.在预报模型的基础上,采用遗传算法对各段工艺参数的平均值进行寻优,得到穿孔效率和穿孔能耗综合优化结果.仿真和试验结果表明,基于穿孔效率和穿孔能耗预报模型的优化方法可有效取得最优工艺参数,为穿孔效率的提高和穿孔能耗的降低提供依据.","authors":[{"authorName":"肖冬","id":"f3e28aef-d46c-4a7e-b30b-ae2b7815a2f0","originalAuthorName":"肖冬"},{"authorName":"王继春","id":"c839edf9-3a91-4a4c-babd-64074fa7110b","originalAuthorName":"王继春"},{"authorName":"毛志忠","id":"67a89eff-8bce-4e6d-81ef-da6e913f795d","originalAuthorName":"毛志忠"},{"authorName":"潘孝礼","id":"7d3a215c-e2ef-4650-bfe3-a7fa5ed8a069","originalAuthorName":"潘孝礼"}],"doi":"","fpage":"14","id":"9e30ecc5-5d07-4627-bba8-77d059e4b2b4","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"df066490-b2e8-4136-921b-3913e2cfac76","keyword":"无缝钢管","originalKeyword":"无缝钢管"},{"id":"a64d8a67-dfd5-4450-ba62-cbebdcaf4fc2","keyword":"穿孔效率","originalKeyword":"穿孔效率"},{"id":"8b7b85fc-2899-4a09-a086-ed30bc4ddce6","keyword":"穿孔能耗","originalKeyword":"穿孔能耗"},{"id":"d128a8a1-bcfa-4d27-b553-0b36658f6439","keyword":"多向独立成分回归","originalKeyword":"多向独立成分回归"},{"id":"57720b72-0474-44f7-a0db-d3bc2d86ced8","keyword":"遗传算法","originalKeyword":"遗传算法"}],"language":"zh","publisherId":"gtyjxb201301004","title":"穿孔效率与能耗的建模与综合优化","volume":"25","year":"2013"},{"abstractinfo":"提出了钢铁生产流程的基准物流图,分析了偏离基准物流图的各股物流对能耗材铁耗的影响.以唐年均生产数据为例,分析了钢铁生产流程的物流对能耗和铁耗的影响.向中间工序输入废钢,可同时使能耗材铁耗降低;流程中途向外界输出含铁物料,可同时使能耗材铁耗上升;含铁物料在某一工序内部循环,或在工序之间循环,不影响材铁耗,但会使能耗上升.","authors":[{"authorName":"陆钟武","id":"4b5e5c6f-1aab-4df3-bb59-7cfc27c52e6c","originalAuthorName":"陆钟武"},{"authorName":"戴铁军","id":"324ff583-ba67-48bc-88d9-960ba13f0fb2","originalAuthorName":"戴铁军"}],"doi":"","fpage":"1","id":"61a43576-a91b-4490-a975-b328b291e1ea","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4d88a636-704d-485c-9ce1-96adfc74eb8a","keyword":"基准物流图","originalKeyword":"基准物流图"},{"id":"05124935-613b-4b36-bacb-8a8f22755b2e","keyword":"物流","originalKeyword":"物流"},{"id":"e29f4387-1438-4324-84a4-6a1f7aa59adc","keyword":"能耗","originalKeyword":"吨材能耗"},{"id":"c3fb3246-5d4c-47e3-b2f2-7b05bdb379fc","keyword":"材铁耗","originalKeyword":"吨材铁耗"}],"language":"zh","publisherId":"gt200504001","title":"钢铁生产流程中物流对能耗和铁耗的影响","volume":"40","year":"2005"},{"abstractinfo":"提出了钢铁生产流程基准确性物流科的概念,分相反了偏离基准确性物流科的各股物流对能耗能耗的影响, 以某钢厂生产数据为例,分相反了生产流程的物流对能耗的影响.","authors":[{"authorName":"陆钟武","id":"4c64b470-1177-45f4-b765-9b1906965c44","originalAuthorName":"陆钟武"},{"authorName":"谢安国","id":"dcef29e4-4aed-46e3-862a-43fb702af18a","originalAuthorName":"谢安国"}],"categoryName":"|","doi":"","fpage":"370","id":"ee2fc097-1d2e-4425-9077-253dafb90752","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"eb2e73fc-8281-4bd1-82bf-e552d5603326","keyword":"基准物流图","originalKeyword":"基准物流图"},{"id":"1bc3e186-2f54-49b9-ac15-1471a5c5a754","keyword":"null","originalKeyword":"null"},{"id":"0d04e245-ecda-4b1e-9c48-2461b5da425e","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2000_4_11","title":"钢铁生产流程的物流对能耗的影响","volume":"36","year":"2000"},{"abstractinfo":"提出了钢铁生产流程基准物流图的概念,分析了偏离基准物流图的各股物流对能耗能耗的影响.以某钢厂生产数据为例,分析了生产流程的物流对能耗的影响.","authors":[{"authorName":"陆钟武","id":"e2ec7ca3-1f64-48ec-b91f-8b2db65ca7df","originalAuthorName":"陆钟武"},{"authorName":"蔡九菊","id":"544d1499-9c75-4319-865c-56f44fc0c25e","originalAuthorName":"蔡九菊"},{"authorName":"于庆波","id":"26b0d94e-8f12-49fd-9be9-83988c682d96","originalAuthorName":"于庆波"},{"authorName":"谢安国","id":"724acaff-9c0d-423e-b06e-9ad785b42ff4","originalAuthorName":"谢安国"}],"doi":"10.3321/j.issn:0412-1961.2000.04.008","fpage":"370","id":"b38953fc-1a77-460b-836e-77039df5f159","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"bf220f73-7d81-4a66-a402-9a0cb392805c","keyword":"基准物流图","originalKeyword":"基准物流图"},{"id":"d8c6d5f8-dc75-42bc-95be-ceb0c1346886","keyword":"能耗","originalKeyword":"吨材能耗"},{"id":"297b4a9e-e9f1-4811-ac58-8d39fa57ab0b","keyword":"能耗","originalKeyword":"吨钢能耗"}],"language":"zh","publisherId":"jsxb200004008","title":"钢铁生产流程的物流对能耗的影响","volume":"36","year":"2000"}],"totalpage":3144,"totalrecord":31434}