{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用预浸法缠绕工艺制备了F-12纤维/氰酸酯树脂基复合材料NOL环、层合板和φ150 mm压力容器,研究了F-12纤维/氰酸酯复合材料的力学性能以及断口微观形貌.研究结果表明,F-12纤维/氰酸酯复合材料的层间剪切强度≤35 MPa,φ150 mm压力容器特性系数PV/Wc值达到34.22 km,纤维强度转化率达到70.22%,断口破坏形式以F-12芳纶纤维撕裂和微纤化为主.","authors":[{"authorName":"惠雪梅","id":"b18f6263-fdb9-440b-9025-5f3faea6f2fa","originalAuthorName":"惠雪梅"},{"authorName":"尤丽虹","id":"7b6086cc-f42d-4b96-9ee6-071b3e53d926","originalAuthorName":"尤丽虹"},{"authorName":"廖英强","id":"9fe6a5cd-4f6b-4953-a7f0-a54cf716d030","originalAuthorName":"廖英强"}],"doi":"","fpage":"39","id":"98cbd2d2-6146-49ec-a725-a235ed2da51a","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"59390c13-7c6d-47bb-b39f-338b248ba59d","keyword":"F-12纤维","originalKeyword":"F-12纤维"},{"id":"61a9edef-c850-43e4-9373-1dc25ccb3e92","keyword":"氰酸酯树脂","originalKeyword":"氰酸酯树脂"},{"id":"b9d164b7-2c70-4fc4-b28c-1d15b891dfbc","keyword":"层间剪切强度(ILSS)","originalKeyword":"层间剪切强度(ILSS)"},{"id":"e18900cc-803c-491a-bd58-e4d26ede0448","keyword":"容器特性系数","originalKeyword":"容器特性系数"},{"id":"8ac36583-b5dd-473d-9264-0a9ac4de7e1a","keyword":"纤维强度转化率","originalKeyword":"纤维强度转化率"}],"language":"zh","publisherId":"yhclgy201206007","title":"F-12纤维/氰酸酯树脂基复合材料力学性能研究","volume":"42","year":"2012"},{"abstractinfo":"从树脂基体、纤维表面处理、缠绕张力、树脂含量四个方面,研究了提高芳纶纤维强度转化率的方法.结果表明:基体性能对纤维强度转化率影响较大;表面处理可以改善界面性能;缠绕张力及树脂含量最佳取值范围则需通过实验确定.","authors":[{"authorName":"张淑慧","id":"f21e13b5-a062-4cfc-8fe6-c954d5b063be","originalAuthorName":"张淑慧"},{"authorName":"张炜","id":"e92ed323-c4ec-4a26-ab5e-63aa9c1d94e7","originalAuthorName":"张炜"},{"authorName":"曾金芳","id":"45e40668-c5cb-450d-ab7b-6ee5f33e435d","originalAuthorName":"曾金芳"}],"doi":"10.3969/j.issn.1007-2330.2003.06.008","fpage":"35","id":"8f4df18f-90f2-4263-9190-397f488f1762","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"885025d1-fe62-4de5-b67b-7bc04c0206e5","keyword":"芳纶纤维","originalKeyword":"芳纶纤维"},{"id":"69ca63f2-2acc-48b7-8e03-a072ab51d020","keyword":"固体火箭发动机","originalKeyword":"固体火箭发动机"},{"id":"c9b83374-d1e9-4df1-85f7-c9150b9b6226","keyword":"纤维增强复合材料","originalKeyword":"纤维增强复合材料"},{"id":"e7a92559-8af5-4376-a9ba-d62fcc54ff91","keyword":"表面处理","originalKeyword":"表面处理"},{"id":"c0275cec-2478-4b17-abea-a1db67addf04","keyword":"强度转化率","originalKeyword":"强度转化率"}],"language":"zh","publisherId":"yhclgy200306008","title":"提高芳纶纤维强度转化率的研究","volume":"33","year":"2003"},{"abstractinfo":"针对T800HB/环氧复合材料壳体易在封头部位产生复杂的应力状态,导致壳体低压破坏的问题,通过采用金属接头结构优化与封头补强措施,使T800HB/环氧复合材料壳体的爆破压力由28.2 MPa提高到36.4 MPa,纤维强度发挥率由65.7%提升至85.6%.","authors":[{"authorName":"周伟江","id":"fee7fca3-2555-497d-9541-b67db83e6347","originalAuthorName":"周伟江"},{"authorName":"廖英强","id":"23ebb5ed-947e-4477-8a6d-8aca320bd8f4","originalAuthorName":"廖英强"},{"authorName":"张世杰","id":"a22c2ecf-424d-41f3-b6c3-b3f60c5703a2","originalAuthorName":"张世杰"},{"authorName":"尤丽虹","id":"a93dac7c-7389-438f-a3ee-6f67ccdc1815","originalAuthorName":"尤丽虹"}],"doi":"10.3969/j.issn.1007-2330.2014.03.026","fpage":"95","id":"68b691cf-f3cb-4ccf-bd20-de11222e3a33","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"4ddc1820-680d-40d3-bdc0-5581f04ff7ad","keyword":"复合材料壳体","originalKeyword":"复合材料壳体"},{"id":"a9f28b03-de77-4d10-bc74-de996f3d1267","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"0c73dc04-5bed-4e4e-8b4b-051d673f8d63","keyword":"应变","originalKeyword":"应变"},{"id":"cbac3a10-fd37-4633-9e29-100d122c17f7","keyword":"纤维强度转化率","originalKeyword":"纤维强度转化率"}],"language":"zh","publisherId":"yhclgy201403026","title":"T800HB/环氧复合材料壳体爆破性能分析","volume":"44","year":"2014"},{"abstractinfo":"首次采用非线性等转化率法研究了聚苯乙烯在氮气中不同升温速率下的非等温热重曲线,通过程序拟合得到了热解过程中活化能Eα与转化率α的关系.实验结果显示,在氮气中聚苯乙烯存在一个失重阶段,起始热解温度随升温速率的增大而升高.动力学拟合结果显示,热解初始阶段的活化能值较低,约为80 kJ/mol,主要对应于聚合物链中弱键的任意断裂反应,其反应速度很快;随着反应的进行,活化能Eα逐渐增大,当α0.3后趋于平缓,此阶段Eα的平均值约为145 kJ/mol,反应主要为聚合物链本身的断裂、解聚;当α0.9时,Eα值迅速减小,反应以链终止反应为主.","authors":[{"authorName":"曾文茹","id":"a305f3e3-ec01-4869-a483-029b3df45c09","originalAuthorName":"曾文茹"},{"authorName":"姚斌","id":"fa9ae0bf-505b-47d0-8039-1124cabf0fd1","originalAuthorName":"姚斌"},{"authorName":"宗若雯","id":"9016d805-2cae-47d6-8b0f-a59141d43cdd","originalAuthorName":"宗若雯"},{"authorName":"周允基","id":"147aee36-9e5b-41d6-975b-0a66e5871037","originalAuthorName":"周允基"}],"doi":"","fpage":"128","id":"42cb129e-8042-4f68-9a99-e283efa6d6e7","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f8678afb-2c36-4165-bc8a-a1fa80dba03d","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"744d2aff-86b6-47c5-8a11-358f7798fc0e","keyword":"非线性等转化率法","originalKeyword":"非线性等转化率法"},{"id":"ff4f0719-2938-43ba-9725-58a19ab296d5","keyword":"热解","originalKeyword":"热解"},{"id":"999f4154-a560-4354-beb6-4b1d06ffdbcf","keyword":"活化能","originalKeyword":"活化能"},{"id":"c8795b67-05db-4f3f-8d10-f500737c2c67","keyword":"转化率","originalKeyword":"转化率"}],"language":"zh","publisherId":"gfzclkxygc200808033","title":"非线性等转化率法研究聚苯乙烯热解反应活化能与转化率的关系","volume":"24","year":"2008"},{"abstractinfo":"用溶液聚合的方法在不同投料比下合成了不同转化率的苯乙烯-丙烯酸丁酯无规共聚物,低转化率下共聚物的组成用1H-NMR测定,聚合物的玻璃化温度(Tg)用差示扫描量热法(DSC)测量.采用非线性最小二乘法(NLLS)计算得到单体的竞聚率rSt=0.831,rBA=0.187,不同转化率瞬时共聚物含量由竞聚率、投料比计算,Tg用前期提出的共聚物Tg组成关系方程计算,累计产品的Tg由瞬时共聚物Tg用Fox公式加和而得,按此种方法预测的St-BA共聚物Tg-转化率关系与实验结果基本一致.","authors":[{"authorName":"李连杰","id":"aefb7eb6-70aa-4602-8849-0220b1c15563","originalAuthorName":"李连杰"},{"authorName":"赵冬梅","id":"53c6b95a-bdaa-4286-9764-2eefae82d2e9","originalAuthorName":"赵冬梅"},{"authorName":"甘泉瑛","id":"ed0f2e31-2ee2-483a-9f5e-c62eca786d29","originalAuthorName":"甘泉瑛"},{"authorName":"骈岩杰","id":"d1bd08b1-4b60-4a6f-b2db-3debdd0e95ab","originalAuthorName":"骈岩杰"},{"authorName":"孙帅龙","id":"787c8d16-497c-4167-ae35-20b49f392456","originalAuthorName":"孙帅龙"},{"authorName":"刘国栋","id":"7f542495-b13b-4537-ba58-35ca7ae18f31","originalAuthorName":"刘国栋"}],"doi":"","fpage":"82","id":"c905a0af-7a31-40c0-abb6-abe8674a476d","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"7d6639a6-3a29-46cb-b7a7-5d0eb66949dc","keyword":"共聚物","originalKeyword":"共聚物"},{"id":"b81c0926-5ef8-4daf-91d6-afc1d7832673","keyword":"玻璃化温度","originalKeyword":"玻璃化温度"},{"id":"2f903fd8-cd85-471b-a60d-ab5feea8861b","keyword":"转化率","originalKeyword":"转化率"},{"id":"a3de9174-abf4-4d3d-9b94-ab9886619e8d","keyword":"组成","originalKeyword":"组成"},{"id":"ad3f1b98-126f-43b1-9604-6b902556e97e","keyword":"序列结构","originalKeyword":"序列结构"}],"language":"zh","publisherId":"gfzclkxygc201104022","title":"St-BA共聚物玻璃化温度与转化率的关系","volume":"27","year":"2011"},{"abstractinfo":"一个化学反应, 如果有两种或两种以上的反应物在其平衡常数关系中有浓度因子, 且其中某一反应物的计量系数大于所有生成物的计量系数之和, 在其它条件不变的情况下, 该反应物的转化率随其自身投料浓度的变化存在极值. 由平衡常数关系式可导出α-Pα函数关系式, 进而由α-P(α)函数关系式和平衡常数关系式组合又可求出该反应物的最佳投料浓度和最大转化率. 介绍了α-P(a)函数关系式的推导过程及最佳投料浓度和最大转化率的确定方法, 并讨论了不同条件下a与P的关系. ","authors":[{"authorName":"王郁文","id":"2827ad70-ce23-4a91-a40d-938130638a92","originalAuthorName":"王郁文"},{"authorName":"王学文","id":"8f302c00-ead7-4c22-a6b4-0e0258eeb0a4","originalAuthorName":"王学文"},{"authorName":"张平民","id":"7d10a671-eec8-476c-bdb4-2fff892f097a","originalAuthorName":"张平民"}],"doi":"10.3969/j.issn.0258-7076.2003.01.031","fpage":"128","id":"8c2b18ee-f155-4c53-ac55-ebdb1ed81d97","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"6cf01533-e0e5-4f94-8ef9-a0db8bf06c7e","keyword":"化学平衡","originalKeyword":"化学平衡"},{"id":"52ab6e3a-f60d-4661-82d3-bdf0402a92f7","keyword":"函数","originalKeyword":"函数"},{"id":"4246e8b7-9207-4cd1-829c-656dc43494a4","keyword":"最佳投料浓度","originalKeyword":"最佳投料浓度"},{"id":"971531ac-30ce-40ed-9d95-d5efc779d7f5","keyword":"最大转化率","originalKeyword":"最大转化率"}],"language":"zh","publisherId":"xyjs200301031","title":"反应物的投料浓度对其自身转化率的影响","volume":"27","year":"2003"},{"abstractinfo":"循环闪蒸中初始液膜具有水平速度,使得循环闪蒸特性与静态闪蒸具有很大的不同.本文设计并搭建了循环闪蒸实验台,研究了在不同主循环流量(400,600,800,1000,1200 L.h-1)、闪蒸腔压力(7.4,12.3,19.9,31.2 kPa)和初始液膜高度(140~250 mm)下纯水循环闪蒸显热转化率随进口过热度的变化规律.实验结果表明,循环闪蒸显热转化率随着进口过热度先减小后增大.在同一过热度条件下,循环闪蒸显热转化率随着闪蒸腔压力的增大而增大,随着初始液膜高度增大而减小,随着主循环流量的增大而略有增大.","authors":[{"authorName":"张友森","id":"e7fd68d6-8d02-4147-ab8b-642571f8dbf7","originalAuthorName":"张友森"},{"authorName":"王超","id":"b06d3e84-60f1-4f5b-9158-d2d7670f5348","originalAuthorName":"王超"},{"authorName":"严俊杰","id":"ac3c2a1e-6fe1-4aa1-be42-be09f68f4f1f","originalAuthorName":"严俊杰"},{"authorName":"王进仕","id":"308d9ee4-6f54-48fc-a207-8fd38b872090","originalAuthorName":"王进仕"},{"authorName":"张焱","id":"3976abe5-a8ed-41e4-b6c3-e614519df5e6","originalAuthorName":"张焱"},{"authorName":"张伟","id":"ab12cc28-a073-4cc1-8a58-0c746a2ae9f3","originalAuthorName":"张伟"}],"doi":"","fpage":"356","id":"9e15da86-e72a-432b-90ac-8f2c95ddc359","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"da209f66-2a29-4f32-aca0-78417b7a37fb","keyword":"循环闪蒸","originalKeyword":"循环闪蒸"},{"id":"2ba786ee-a1d6-4610-933e-35fead180bec","keyword":"纯水","originalKeyword":"纯水"},{"id":"e49276a7-f6b8-44ac-ab72-39664a206f22","keyword":"汽化","originalKeyword":"汽化率"},{"id":"af24a913-6d8e-4ce2-986b-72bcc3bd467c","keyword":"显热转化率","originalKeyword":"显热转化率"}],"language":"zh","publisherId":"gcrwlxb201502028","title":"纯水循环闪蒸显热转化率的实验研究","volume":"36","year":"2015"},{"abstractinfo":"为了探讨温度和应变率对NiTi记忆合金相变转换的影响,本文利用准静态试验机和分离式Hopkinson压杆的恒应变率技术对板条状和圆柱状试样进行了不同应变率的试验,同时通过改变温度检查相变转换的速度,结果表明:在较低的10-2/s应变率下,NiTi记忆合金伪弹性变形过程自身就会有6.5℃温升,这意味着在高应变率下其性能是温度与的耦合效应;随外界环境温度的增加,NiTi记忆合金的相变恢复速率由递增趋于一稳态值,当温度超过365K时,恢复速率趋缓至约0.014mm/s;随应变率增加,相变转换会趋于极限,即应力诱发的奥氏体向马氏体相转化阶段在应变率超过6000/s时基本不变,表明更高的应变率已不能引起NiTi相变转换.","authors":[{"authorName":"褚世永","id":"d71baa05-2519-454a-ae91-a7003667815e","originalAuthorName":"褚世永"},{"authorName":"郭伟国","id":"d4254458-31d9-48df-a0bd-9b639e60c40a","originalAuthorName":"郭伟国"}],"doi":"","fpage":"735","id":"a34fd61e-a5c5-4cf9-af08-10570cc2a218","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"8adf5e41-1930-4620-8cf7-2c1d552ac67a","keyword":"NiTi记忆合金","originalKeyword":"NiTi记忆合金"},{"id":"f6915196-4ac1-4ddb-b03a-84e8bc3a361a","keyword":"相变转换","originalKeyword":"相变转换率"},{"id":"19af9645-90cf-4660-880f-ae088550d84d","keyword":"应变率","originalKeyword":"应变率"},{"id":"c4f8480f-eaa6-47e8-a18d-dc2dbc398573","keyword":"温度","originalKeyword":"温度"},{"id":"e10ba627-5321-40ac-aa2a-f9d58f9e6190","keyword":"Hopkinson杆","originalKeyword":"Hopkinson杆"}],"language":"zh","publisherId":"clkxygc200905022","title":"温度和应变率对NiTi记忆合金相变转化率的影响","volume":"27","year":"2009"},{"abstractinfo":"三水碳酸镁晶须是一种重要的新型功能镁化合物材料,由于近乎完美的纤维状单晶结构,在高分子材料的增强、绝热、防火、颜料改性等方面具有巨大的应用潜力,碳酸镁晶须还可以用于制备氧化镁晶须、高纯氧化镁和碱式碳酸镁等重要的电子和光学材料.以工业氢氧化镁为原料,以柠檬酸钠为添加剂,采用常压碳化法,高镁转化效率制备了三水碳酸镁晶须.详细研究了结晶温度、柠檬酸钠添加量、反应时间及搅拌速率对镁离子的转化率和三水碳酸镁晶须形貌的影响,并对柠檬酸钠在结晶过程中的作用机理进行了探讨.结果表明,在0.2%(质量分数)柠檬酸钠的存在下,三水碳酸镁晶须的形成温度可以提高到90℃,镁离子转化率大幅提高到约80%.在优化的结晶时间为30 min,搅拌速率为200 r/min的条件下,可制备长径比达到28、尺寸均一、结晶度达99.19%、不合氯和钠离子的三水碳酸镁晶须.","authors":[{"authorName":"王素平","id":"1676df5e-d68a-40a4-b4e6-a15faa049243","originalAuthorName":"王素平"},{"authorName":"肖殷","id":"c8d2c24e-21fd-43fc-9da8-8c85f2de1527","originalAuthorName":"肖殷"},{"authorName":"王世荣","id":"fbfcf5c0-cf03-47fe-b162-f4d13b2251b2","originalAuthorName":"王世荣"},{"authorName":"李祥高","id":"0c01e854-ee5f-4d4c-83a7-a4c346bf7bf4","originalAuthorName":"李祥高"}],"doi":"10.3969/j.issn.1001-9731.2016.02.024","fpage":"2116","id":"687f3bbe-14a3-4a4e-ac76-609dc8826387","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3b9d1eb0-8505-4b8b-8ae3-d752c2d3a090","keyword":"三水碳酸镁","originalKeyword":"三水碳酸镁"},{"id":"d5a8cec4-8961-46ce-9659-3c6cf20bd36b","keyword":"晶须","originalKeyword":"晶须"},{"id":"55f88875-d34d-47f5-ad76-5b11c0e4ab79","keyword":"柠檬酸钠","originalKeyword":"柠檬酸钠"},{"id":"03c807b6-4199-4b12-a409-8023cc700898","keyword":"结晶","originalKeyword":"结晶"},{"id":"b18f0250-88df-4168-a907-d0dce269434b","keyword":"转化效率","originalKeyword":"转化效率"}],"language":"zh","publisherId":"gncl201602024","title":"高镁转化率三水碳酸镁晶须生长条件的研究","volume":"47","year":"2016"},{"abstractinfo":"针对还原扩散法制备TbFe2合金的主要实验参数:反应温度、保温时间、Ca的加入量及Fe的粒度,建立BP神经网络,进行仿真,预测TbFe2合金的转化率.以44组实验数据作为训练样本,进行了网络设计.通过测试及对网络的性能分析,证明了该网络能够准确预测不同实验参数下TbFe2合金的转化率,并具有良好的性能.该网络的设计可以缩短实验周期,节约实验成本,并对反应的机理及工艺研究有一定的价值.","authors":[{"authorName":"郭广思","id":"e48ec8df-1dff-457b-93b4-366f0add4e27","originalAuthorName":"郭广思"},{"authorName":"王广太","id":"256f7f4e-11f5-4be8-bef8-baf0f394f62e","originalAuthorName":"王广太"},{"authorName":"成永君","id":"47b93e33-c3d1-43e7-93a2-01188d9daf9d","originalAuthorName":"成永君"},{"authorName":"胡小媚","id":"31b5f23f-90c0-4aba-bdf2-72bc524caea5","originalAuthorName":"胡小媚"}],"doi":"","fpage":"1104","id":"18466d61-f0bc-4469-b6a9-dba449e5d6ef","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"23da8207-55a0-4515-854c-dc252b93af94","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"8bce0476-4577-47e2-93fc-6e61ebb9b73b","keyword":"预测","originalKeyword":"预测"},{"id":"072ab724-4d67-499c-b78c-737f5d0930a9","keyword":"TbFe2合金","originalKeyword":"TbFe2合金"},{"id":"38d53542-fe2c-42ea-8574-4be63127a20a","keyword":"转化率","originalKeyword":"转化率"}],"language":"zh","publisherId":"xyjsclygc201505013","title":"神经网络预测还原扩散法制备TbFe2合金转化率的研究","volume":"44","year":"2015"}],"totalpage":6505,"totalrecord":65050}