{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对喂料粘度模型参数求解和现有模流分析软件无拟合功能的问题,引入Cross-WLF七参数模型对MIM中非牛顿流体流动过程进行了研究,提出了自适应快速遗传算法拟合该模型参数,开发了粘度模型参数拟合求解器,得到了W-Ni-Fe高密度粉末喂料和316L不锈钢喂料粘度模型的7个参数,拟合结果的复合相关系数分别达到0.998 489和0.998 200.研究结果为高密度类零件和不锈钢类的质量预测、模具和工艺参数优化设计提供了必须的材料数据.","authors":[{"authorName":"蒋炳炎","id":"0f5b0202-4b87-47f8-b917-45081a7e46d5","originalAuthorName":"蒋炳炎"},{"authorName":"王麟","id":"684e7359-2e36-4298-97b5-d77eb6f7d2ee","originalAuthorName":"王麟"},{"authorName":"谢磊","id":"04998a4b-f0ad-4477-8fc8-baf115beedc6","originalAuthorName":"谢磊"},{"authorName":"黄伯云","id":"dbc80926-0320-4293-b057-ab047a239287","originalAuthorName":"黄伯云"}],"doi":"","fpage":"429","id":"3cc00e1e-cb0b-444f-81d5-a622601dc300","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"9428df5b-0c9b-4a00-ac4a-3de2351448b9","keyword":"金属粉末注射成形","originalKeyword":"金属粉末注射成形"},{"id":"ab093d35-81e4-469c-af77-43c8c4e96528","keyword":"遗传算法","originalKeyword":"遗传算法"},{"id":"8696c0f2-683f-4eca-be7d-09e2c3074d4a","keyword":"参数拟合","originalKeyword":"参数拟合"},{"id":"2281b606-c7fd-4e58-931e-d07e6dab6d87","keyword":"粘度模型","originalKeyword":"粘度模型"}],"language":"zh","publisherId":"zgysjsxb200503018","title":"金属粉末注射成形仿真分析的喂料粘度模型参数","volume":"15","year":"2005"},{"abstractinfo":"采用经典Galerkin有限元法和Newton-Raphson迭代法,配合适当的边界条件实现了微流道中牛顿流体和剪切变稀流体前沿喷泉流动的数值仿真.结果表明:两种流体在喷泉流动区域的速度压力分布规律相同,在微尺度条件下流体的本构特性对喷泉流动的形式影响较小,仅是剪切变稀流体的喷泉区域略大于牛顿流体.在微尺度条件下,喷泉效应仍然是一种纯流体动力学现象.表面张力对微流体前沿喷泉流动区域的速度压力分布影响很小,但其在流体前沿自由表面上产生的切向应力使流体前沿的形状产生较大变形,与理想的半圆形相差较远.","authors":[{"authorName":"蒋炳炎","id":"c6c32252-a01c-48c2-9074-5b2ef240e352","originalAuthorName":"蒋炳炎"},{"authorName":"谢磊","id":"d8e10860-31c0-4a8a-a721-14ebf9d695a3","originalAuthorName":"谢磊"},{"authorName":"吴旺青","id":"2e896ce1-b7c9-4341-aee7-e5cd056cb392","originalAuthorName":"吴旺青"},{"authorName":"彭华建","id":"6dfe541e-5233-4e60-a4bc-02b14b2b975a","originalAuthorName":"彭华建"}],"doi":"","fpage":"5","id":"9fbce9c0-52d1-4791-b90a-ecbeed1e82aa","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c9fe0e6c-7e75-42ec-9e09-c72c796c6f13","keyword":"微流道","originalKeyword":"微流道"},{"id":"104329ad-394f-4aa0-bd25-a5dd72aea68a","keyword":"微流体","originalKeyword":"微流体"},{"id":"c05dfebb-16b3-4ceb-9dc3-d1b9fef707b1","keyword":"喷泉流动","originalKeyword":"喷泉流动"},{"id":"26348cbe-cbff-4faa-ad68-71cf6550af75","keyword":"有限元","originalKeyword":"有限元"},{"id":"a2f843dc-fa79-4862-8f6d-a1b972aac2ac","keyword":"仿真","originalKeyword":"仿真"}],"language":"zh","publisherId":"gfzclkxygc200605002","title":"微尺度流道中流体流动前沿的喷泉流动仿真","volume":"22","year":"2006"},{"abstractinfo":"用Ansys有限元软件对微透镜阵列模芯电铸过程中的电场线分布进行模拟分析,研究了辅助阴极的尺寸对电流密度分布的影响,预测了电铸模芯厚度均匀性的变化趋势.分析发现,辅助阴极能提高电铸模芯厚度的均匀性,当框形辅助阴极与母板阴极的边长之比为1.5时,模芯表面的电流密度相对偏差由无辅助阴极时的82.8%降低至10.1%.通过电铸实验对模拟结果进行验证.结果表明,所得铸层厚度偏差可降低到18.89%,与模拟分析结果较为一致.电铸成型所得1 mm厚的微透镜阵列模芯厚度均匀,微观形貌与母板一致,可应用于微注塑成型工艺.","authors":[{"authorName":"吕辉","id":"651a40b6-aa58-49dc-8d6e-ca6e8a143b76","originalAuthorName":"吕辉"},{"authorName":"徐腾飞","id":"dd926be0-d2cd-48aa-9a81-7cec3910fc9e","originalAuthorName":"徐腾飞"},{"authorName":"刘佳","id":"bd4cfc45-5c49-4f90-9b5c-df2ed2bd8cfe","originalAuthorName":"刘佳"},{"authorName":"黎醒","id":"dde2182a-9cff-4c53-8136-3dd758d42699","originalAuthorName":"黎醒"},{"authorName":"蒋炳炎","id":"99c2b06c-8e42-4a62-b18c-65c5f494d31d","originalAuthorName":"蒋炳炎"}],"doi":"","fpage":"732","id":"a6cad4fa-dd2a-4527-8ff8-ae867a6867a9","issue":"17","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"14b66ed0-10a9-4ff0-891e-93cd613fdbb6","keyword":"微透镜阵列","originalKeyword":"微透镜阵列"},{"id":"da00f2aa-37ab-4633-84b9-6ab9fe8f0881","keyword":"微模芯","originalKeyword":"微模芯"},{"id":"3029c3a0-2533-406d-8bbe-e162cdbd36f2","keyword":"电铸","originalKeyword":"电铸"},{"id":"00fcb65e-197c-4d69-aa44-3ab8a22880f4","keyword":"辅助阴极","originalKeyword":"辅助阴极"},{"id":"993ff513-08d1-4cbc-818a-0e13cdd7d5f2","keyword":"数值仿真","originalKeyword":"数值仿真"},{"id":"9f9d448c-5596-4dc5-9920-887e58bb0652","keyword":"厚度均匀性","originalKeyword":"厚度均匀性"},{"id":"1b0ee8bf-31b9-46f2-a155-6dea383ab8eb","keyword":"电流密度分布","originalKeyword":"电流密度分布"}],"language":"zh","publisherId":"ddyts201417003","title":"辅助阴极对电铸微模芯厚度均匀性的影响","volume":"33","year":"2014"},{"abstractinfo":"为探讨注射成型能否生产复杂外形软磁改性塑料器件,配比了聚丙烯(PP)添加不同体积含量FeSi粉末的八个组成试样,测试了试样在不同温度随剪切速率变化的黏度、导热率和比热容,在注塑机上进行了流动长度测试.同时,运用麦夸特法+通用全局优化算法对黏度数据拟合,构建Cross-WLF黏度模型进行数值计算,其结果与试验结果一致.结果表明,随FeSi含量的增加,试样的黏度升高,比热容降低,导热率升高,流动性能变差;当FeSi含量达70%时流动长度只有纯PP的15%.因此,要想获得理想复杂外形的软磁改性塑料器件,须使用较大注射压力和较高熔体温度进行注射成型.","authors":[{"authorName":"李松柏","id":"2d8bf9a9-d1a6-4026-a659-a9840a827bba","originalAuthorName":"李松柏"},{"authorName":"KIRCHBERG Stefan","id":"8ee426e9-d4b6-44aa-abc7-d0031963f966","originalAuthorName":"KIRCHBERG Stefan"},{"authorName":"谢磊","id":"ff4f732f-8ccb-458b-95c9-0e932a5f8cb6","originalAuthorName":"谢磊"},{"authorName":"蒋炳炎","id":"e66de698-73bb-4f8e-b212-486d9fa57575","originalAuthorName":"蒋炳炎"}],"doi":"","fpage":"164","id":"ae158329-74ba-4c6c-947b-8b36a89d8c72","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3eb3b410-701f-4dec-ad54-97ff9df72fe2","keyword":"软磁改性塑料","originalKeyword":"软磁改性塑料"},{"id":"2736618a-3940-42ce-b06e-9cbd5a1f928c","keyword":"螺旋模","originalKeyword":"螺旋模"},{"id":"504215ed-7335-471a-9390-124eba1271a9","keyword":"流变性能","originalKeyword":"流变性能"},{"id":"560361bc-9202-4bd4-9453-39bb5b14421e","keyword":"Cross-WLF模型","originalKeyword":"Cross-WLF模型"}],"language":"zh","publisherId":"gfzclkxygc201003045","title":"PP+FeSi复合材料流变性能测试及数值模拟","volume":"26","year":"2010"},{"abstractinfo":"针对注塑成型微流控芯片过程中出现翘曲变形和微通道复制精度不高等缺陷,采用正交分析法,仿真优化了芯片厚度方向上的翘曲变形;基于翘曲优化结果,实验研究了微注射成型微流控芯片过程中模具温度、熔体温度和注射速度对微通道变形的影响.结果表明,保压时间和保压压力对微流控芯片的翘曲变形影响最大,而模具温度对微通道变形影响最为显著.采用优化的工艺参数,所成型的芯片微通道具有较高的复制度,无明显翘曲变形,可满足使用要求.","authors":[{"authorName":"楚纯朋","id":"3f60cf7f-50fb-4dd3-923a-ccb572b10db9","originalAuthorName":"楚纯朋"},{"authorName":"蒋炳炎","id":"222aeab6-1482-444b-a055-fd07d27aebc5","originalAuthorName":"蒋炳炎"},{"authorName":"周陆腾","id":"ce215a61-2437-453e-8f07-a181dbb2b1e8","originalAuthorName":"周陆腾"},{"authorName":"聂胜钊","id":"4260ad5e-5800-4f1d-ad44-b68644cd4cdf","originalAuthorName":"聂胜钊"}],"doi":"","fpage":"113","id":"b58b0c78-200b-4fbc-9bae-a2dfa4d6ad91","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"097d9e52-8ef0-432b-b41d-3d0d6cc5a4b3","keyword":"微注射成型","originalKeyword":"微注射成型"},{"id":"f8699ee1-7139-44d2-8935-e16bb5f6a798","keyword":"翘曲","originalKeyword":"翘曲"},{"id":"039f19af-697b-4c93-8acc-f38608c4b547","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"f8a50adc-09c7-4aab-b07c-96e033c30155","keyword":"微流控芯片","originalKeyword":"微流控芯片"},{"id":"9761ab3b-7c31-40bb-aeb8-3bdc45d50754","keyword":"微通道","originalKeyword":"微通道"}],"language":"zh","publisherId":"gfzclkxygc201306027","title":"聚合物微流控芯片的注射成型","volume":"29","year":"2013"},{"abstractinfo":"纳注射成型中,聚合物熔体在纳米型腔中的充填质量以及纳米结构的脱模完好性是决定纳结构零件复制质量的关键因素.文中采用分子动力学方法,建立聚甲基丙烯酸甲脂(PMMA)与金属镍模芯的界面模型,研究PMMA的玻璃化转变温度(Tg),深入分析注射成型过程中分子链的运动规律以及充填过程中的密度分布、体系能量等构象统计规律,并探讨纳米结构在脱模后的变形情况.结果表明,分子模拟得到的Tg与实验结果相符;纳米结构的充填主要发生在保压阶段,其平均充填率为55.8%;纳米结构在脱模后出现了一定程度的弯曲变形,但仍能保持其整体形貌.","authors":[{"authorName":"蒋炳炎","id":"6440467c-490a-4e17-8aff-9faa5e536255","originalAuthorName":"蒋炳炎"},{"authorName":"周明勇","id":"51f9b406-40ea-4f61-b6ae-16df26a8ebb4","originalAuthorName":"周明勇"},{"authorName":"鲁立君","id":"0b501387-1855-4071-b2a3-e637b7f4adc6","originalAuthorName":"鲁立君"},{"authorName":"翁灿","id":"93d31a03-d156-43d2-814e-c03aa1bed4aa","originalAuthorName":"翁灿"}],"doi":"","fpage":"122","id":"e6701eb5-f6d0-4adf-a1c9-e16344708644","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"249da344-af85-489d-a292-1a059074d913","keyword":"注射成型","originalKeyword":"注射成型"},{"id":"6fb6798d-fa42-47e1-9869-9a75f4f09b51","keyword":"纳米结构","originalKeyword":"纳米结构"},{"id":"f44fb04f-af7d-45d1-9976-5b0a8b8630d1","keyword":"充填机理","originalKeyword":"充填机理"},{"id":"3a8fbb91-8954-47d6-b6be-c44b47f10f48","keyword":"分子动力学","originalKeyword":"分子动力学"},{"id":"845f0fe0-b8c4-49be-bf70-ebe5760ff0d7","keyword":"聚甲基丙烯酸甲酯","originalKeyword":"聚甲基丙烯酸甲酯"}],"language":"zh","publisherId":"gfzclkxygc201509024","title":"纳米结构零件注射成型过程的分子动力学模拟","volume":"31","year":"2015"},{"abstractinfo":"为准确检测和修理飞机钛合金构件的热损伤,选用TA4、TC9进行热损伤模拟试验,对材料在不同温度下的力学性能、电导率与加热温度的关系进行了分析.结果表明,TA4、TC9的强度、硬度和电导率随温度的上升呈单调变化趋势;硬度和电导率均可作为钛合金热损伤的检测参数.","authors":[{"authorName":"陈勇","id":"2245c175-dbe8-4023-a065-ec3bb01dd1a3","originalAuthorName":"陈勇"},{"authorName":"蒋炳炎","id":"a65eccb8-cff9-42f0-9ab8-493c814d4ced","originalAuthorName":"蒋炳炎"},{"authorName":"周志平","id":"4e0b1d70-441d-4a97-acba-33779d428404","originalAuthorName":"周志平"},{"authorName":"湛建平","id":"7480214c-dedb-4497-b8f3-75e9e4c15569","originalAuthorName":"湛建平"}],"doi":"10.3969/j.issn.1007-2330.2007.05.020","fpage":"75","id":"ee0b7942-303f-4761-ae37-3569a2bdac03","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"0a421ac7-2a0b-4003-a19c-99269c5055da","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"6391e175-e893-4d14-808f-192b3405c3f6","keyword":"热损伤","originalKeyword":"热损伤"},{"id":"2a673976-36bd-4160-9c8e-c117ac7867c2","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"20e4cf8c-6eb4-40ce-9ec3-e8b6a6add084","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"yhclgy200705020","title":"飞机钛合金构件热损伤检测试验","volume":"37","year":"2007"},{"abstractinfo":"对近年来聚合物纳米/亚微米结构零件注射成型的研究进展进行综述,着重阐述成型材料、模芯材料和成型工艺对纳米/亚微米结构成型复制质量的影响,以及纳注射成型过程中的辅助成型技术和模芯制造方法.在此基础上,提出了纳注射成型技术中存在的问题,并对其发展进行展望.","authors":[{"authorName":"周明勇","id":"ae4f5762-2282-4c6b-b11c-b8652283fe69","originalAuthorName":"周明勇"},{"authorName":"蒋炳炎","id":"5fd09b2a-f99c-4ac9-86a2-714361548933","originalAuthorName":"蒋炳炎"},{"authorName":"鲁立君","id":"d42c7ecd-107b-480a-8c2a-777f7dd5d3e2","originalAuthorName":"鲁立君"},{"authorName":"张露","id":"a5bb06dc-7c61-44ab-a97e-5690bd0f5dcb","originalAuthorName":"张露"},{"authorName":"陈磊","id":"c0ad3382-56d9-4925-af33-6eae1599a2fa","originalAuthorName":"陈磊"}],"doi":"10.3969/j.issn.1001-4381.2014.04.017","fpage":"95","id":"fc4fca74-9ca4-4709-9c25-35163c6fe471","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"6e70cc70-e22c-48c7-bfb7-4e99901f4a68","keyword":"纳米/亚微米结构","originalKeyword":"纳米/亚微米结构"},{"id":"94baa93a-d35c-43b4-ae39-df5826802bd8","keyword":"纳注射成型","originalKeyword":"纳注射成型"},{"id":"e99fed59-a0e7-4129-8105-be1741aad2ff","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"b25211a2-b329-492b-b7b1-aebbb6514624","keyword":"复制质量","originalKeyword":"复制质量"}],"language":"zh","publisherId":"clgc201404017","title":"聚合物纳米/亚微米结构零件注射成型的研究进展","volume":"","year":"2014"},{"abstractinfo":"在Navier-Stokes方程基础上,配合适当边界条件,借助计算流体力学软件CFD-ACE实现了单侧分布矩形微结构、梯形微结构和双侧分布矩形微结构零件模型的流场仿真,得到了三种零件的速度场和剪切速率场.结果表明,单侧矩形微结构零件各微结构截面的速度和剪切速率都有较大差异;单侧梯形微结构零件各微结构截面的剪切速率分布一致,速度分布不一致;双侧矩形微结构零件三个微结构截面的速度和剪切速率都一致.单侧分布梯形微结构零件流场均匀性好于单侧分布矩形微结构零件流场均匀性,双侧分布的微结构零件流场均匀性好于单侧布置的微结构零件流场均匀性.","authors":[{"authorName":"蒋炳炎","id":"70b3b483-1d5d-4a7d-86e8-4805ce7a9566","originalAuthorName":"蒋炳炎"},{"authorName":"蓝才红","id":"cded8b4e-c64a-4cdf-8039-62caeb1064c7","originalAuthorName":"蓝才红"},{"authorName":"汤美林","id":"c3072cae-1d01-4e7f-a0b9-941b3fbfbe2c","originalAuthorName":"汤美林"}],"doi":"","fpage":"9","id":"a447d64f-e192-4f1b-835e-29fbe2322bae","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"983707b4-8700-49ce-867e-c95a481ab626","keyword":"微结构","originalKeyword":"微结构"},{"id":"5a8b9f08-a6f7-4bbc-b8c7-ab80a388616f","keyword":"表面张力","originalKeyword":"表面张力"},{"id":"fe9e7c85-7dc8-4b81-ab75-5c2a9e67f115","keyword":"微注射成型","originalKeyword":"微注射成型"},{"id":"8f426167-f924-455d-8093-1cc1d671c85f","keyword":"流场仿真","originalKeyword":"流场仿真"}],"language":"zh","publisherId":"gfzclkxygc200808003","title":"微结构特征对微结构零件注射成型流场均匀性的影响","volume":"24","year":"2008"},{"abstractinfo":"本文采用4种不同槽型结构的切槽硬质合金刀片-TR、-SZ0、-SZ1和-SZ2进行高温合金GH4169切槽切削实验,测定各切槽硬质合金刀片的切削寿命及刀片磨损,观察切削实验切屑形貌,并通过有限元软件模拟仿真切槽切屑形貌,揭示硬质合金刀片的槽型结构对GH4169切槽加工性能的影响规律.结果表明:在目前国内航空加工企业的主流切削速度(v为40、60 m/min)条件下,-SZ2切槽刀片锋利的直线型刃口形式有利于提高刀片的使用寿命,其合理的断屑台结构可获得良好而稳定的断屑效果.","authors":[{"authorName":"王云志","id":"17fec621-5ef8-4fe4-8484-65bf90786b14","originalAuthorName":"王云志"},{"authorName":"蒋炳炎","id":"a10c37a7-9060-469e-87dc-954cb72c72e3","originalAuthorName":"蒋炳炎"},{"authorName":"王春秀","id":"19a2e89e-b365-40c0-9099-eace22e725c6","originalAuthorName":"王春秀"}],"doi":"10.3969/j.issn.1003-7292.2016.04.010","fpage":"268","id":"405f6e7e-5af3-4fad-8c78-94790bdedf10","issue":"4","journal":{"abbrevTitle":"YZHJ","coverImgSrc":"journal/img/cover/YZHJ.jpg","id":"75","issnPpub":"1003-7292","publisherId":"YZHJ","title":"硬质合金"},"keywords":[{"id":"db81934b-a421-4836-bd25-3607cd770406","keyword":"高温合金GH4169","originalKeyword":"高温合金GH4169"},{"id":"1baf88ad-5348-4dbd-a78f-ae63f7388937","keyword":"硬质合金刀片","originalKeyword":"硬质合金刀片"},{"id":"2df1280a-df61-44dd-8963-a9deb7218af1","keyword":"断屑槽结构","originalKeyword":"断屑槽结构"},{"id":"69f65072-41f5-4740-97e4-359af0c0c38c","keyword":"切槽加工","originalKeyword":"切槽加工"},{"id":"162b8cb8-84c6-44de-8198-07a767a954c9","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"yzhj201604010","title":"槽型结构对GH4169切槽加工性能的影响","volume":"33","year":"2016"}],"totalpage":6,"totalrecord":52}