{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文针对外贴复合材料加固混凝土梁存在的不足,将玻璃纤维材料(GFRP)先施加预应力,再将其外贴到混凝土梁受拉面以提高混凝土梁的承载能力.针对GFRP板横向抗剪切挤压强度低的缺点,研究对GFRP板的预应力施加方法,在此基础上完成了9根不同预应力度,不同混凝土强度等级混凝土梁的抗弯试验;同时完成了4根预应力GFRP板在梁侧立面不同粘贴方式抗剪试验研究.试验结果表明,外贴预应力GFRP板加固混凝土梁可大幅度提高混凝土梁的开裂弯矩、极限承载力及GFRP板的强度利用率,改善梁的裂缝开展情况及提高梁的抗变形能力.","authors":[{"authorName":"曾宪桃","id":"adca08af-dcbb-4995-ac3c-3ffe716cabdf","originalAuthorName":"曾宪桃"},{"authorName":"丁亚红","id":"1b43ab08-cea3-4ab6-a449-1792185fafba","originalAuthorName":"丁亚红"},{"authorName":"李慧敏","id":"26b2f759-3c9c-47ae-a294-3bcf6325b2f9","originalAuthorName":"李慧敏"}],"doi":"10.3969/j.issn.1003-0999.2007.05.001","fpage":"3","id":"696514cd-d648-4136-85db-c6250147c68f","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"33c61d0a-6638-4e67-ae62-807715a031d3","keyword":"预应力","originalKeyword":"预应力"},{"id":"0f1946ce-5e90-4d1b-b29b-b46cd2ddb340","keyword":"GFRP板","originalKeyword":"GFRP板"},{"id":"e540d2dd-b556-442f-be42-0fa240015daf","keyword":"加固","originalKeyword":"加固"},{"id":"d1280363-2e3d-464e-8478-b25039e52153","keyword":"混凝土梁","originalKeyword":"混凝土梁"},{"id":"b50073c5-a5bf-476b-8705-2fdefed2f205","keyword":"试验","originalKeyword":"试验"}],"language":"zh","publisherId":"blgfhcl200705001","title":"外贴预应力玻璃钢板加固混凝土梁试验研究","volume":"","year":"2007"},{"abstractinfo":"为了研究玻璃纤维布的拉伸强度,通过5个涂浸渍胶和未涂胶的试件进行了轴向拉伸实验.结果表明,环氧树脂不仅有粘贴和保护玻璃纤维布的作用,而且能够提高其拉伸强度.为进一步分析玻璃纤维强化塑料(GFRP)板时加固结构的影响,特制备9个单层GFRP板加固混凝土梁试件,对其进行四点弯曲加载实验,并在其中一个试件的GFRP表面粘贴了应变片,进行电测跟踪测试,从而得到结构损伤破坏过程曲线和应变片粘贴处的应变值.对比两种实验得知,GFRP板轴向拉伸强度比四点弯曲实验得到的强度大.又由测试数据和力学模型,得到FRP板轴力以及与混凝土间界面上的切应力分布曲线.","authors":[{"authorName":"戈晓霞","id":"302f3397-81cf-4056-a2c7-47e809c6be95","originalAuthorName":"戈晓霞"},{"authorName":"张东焕","id":"124c844e-5269-4c56-b72c-aeb6fbf46603","originalAuthorName":"张东焕"},{"authorName":"王利民","id":"86c61242-0cc0-40fb-9065-6d68ec7dae2a","originalAuthorName":"王利民"},{"authorName":"何敏","id":"3a6fb82b-1ff1-4d0b-a8a6-e7fe8d92209c","originalAuthorName":"何敏"},{"authorName":"任鹏","id":"08042b9c-410e-4c75-9bd6-53776f95923d","originalAuthorName":"任鹏"}],"doi":"10.3969/j.issn.1003-0999.2009.06.002","fpage":"5","id":"ada44d0b-ee8a-45f0-943d-5a641d132113","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"0d967836-b7ad-471b-90c0-61d0d21eb654","keyword":"混凝土梁","originalKeyword":"混凝土梁"},{"id":"645d3806-7d73-477b-a4ae-aa9fd69db961","keyword":"玻璃纤维强化板(GFRP)","originalKeyword":"玻璃纤维强化板(GFRP)"},{"id":"a1b6a14a-7196-4072-9a1d-f863c18dda25","keyword":"拉伸强度","originalKeyword":"拉伸强度"},{"id":"d340e984-3f50-46eb-adfc-6b83a02f1802","keyword":"电测","originalKeyword":"电测"},{"id":"4db0f645-c5bd-4213-b526-875ad127a1be","keyword":"切应力分布","originalKeyword":"切应力分布"}],"language":"zh","publisherId":"blgfhcl200906002","title":"加固混凝土梁的GFRP板抗拉强度与界面切应力","volume":"","year":"2009"},{"abstractinfo":"利用Hopkinson杆加载装置,对带有单边切口的炭纤维增强复合材料(CFRP)及玻璃纤维增强复合材料(GFRP)层板试件进行冲击拉伸加载实验.根据一维应力波理论求得作用于试件上的载荷P(t)和试件加载点的位移δ(t).根据试样中应力随时间的变化历史σ(t),并基于断裂韧性测试原理,建立了动态应力强度因子K1(t)响应曲线.利用柔度变化率方法确定起裂时间,分别得到在两种加载速率下CFRP、GFRP层板的动态断裂韧性.结果表明,随着加载速率的提高,这两种复合材料的断裂韧性降低.","authors":[{"authorName":"韩小平","id":"06056e45-4275-4d98-b1cb-87f0b5bc047f","originalAuthorName":"韩小平"},{"authorName":"曹效昂","id":"e7328f04-e7ef-4c1d-b297-fae2b5d7f0ff","originalAuthorName":"曹效昂"},{"authorName":"朱西平","id":"950960d4-b70b-45f9-bab4-c7ea937d2160","originalAuthorName":"朱西平"}],"doi":"10.3321/j.issn:1000-3851.2007.02.024","fpage":"137","id":"f3514cd8-b3da-4970-901f-de65d8277272","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"98b9a43c-f41b-4348-a593-989b9285e748","keyword":"Hopkinson杆","originalKeyword":"Hopkinson杆"},{"id":"be98549e-511e-4890-bf84-87e6abff7a4f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1c26415d-4584-49b2-9484-a475ccd218e4","keyword":"动态断裂韧性","originalKeyword":"动态断裂韧性"},{"id":"4375bbb1-bb86-48a5-b62b-d81df7eebea3","keyword":"加载速率","originalKeyword":"加载速率"},{"id":"f68143b1-95c9-4185-8bed-95801e43ef55","keyword":"柔度变化率方法","originalKeyword":"柔度变化率方法"}],"language":"zh","publisherId":"fhclxb200702024","title":"冲击载荷下CFRP及GFRP层板断裂韧性的研究","volume":"24","year":"2007"},{"abstractinfo":"对铺设角分别为0°、30°、45°、90°的玻璃纤维增强不饱和聚酯树脂单向板进行拉-拉疲劳试验,得到不同铺设角玻璃纤维增强不饱和聚酯树脂(GFRP)单向板疲劳数据,通过分析不同铺设角单向板中值S-N曲线及正则应力-寿命曲线特点,得到了单向板疲劳性能随铺设角变化的关系。并且基于对不同铺设角单向板疲劳断口的宏观及微观形貌的分析,研究了铺设角对单向板的疲劳损伤机制、失效模式的影响。分析表明,对应于不同的铺设角,单向板存在不同的失效机制,从而导致不同形式的损伤模式。","authors":[{"authorName":"石文静","id":"ddbcdd81-5331-4348-845c-4421cfae030e","originalAuthorName":"石文静"},{"authorName":"胡伟平","id":"8e95f43c-1c4f-4ecc-8bfa-cee6f446d610","originalAuthorName":"胡伟平"},{"authorName":"张淼","id":"43e9efd1-62df-4ed8-87c4-024d4878c48e","originalAuthorName":"张淼"},{"authorName":"孟庆春","id":"bb4cf660-9909-4eb3-9ea1-bac77ad4c87a","originalAuthorName":"孟庆春"}],"doi":"","fpage":"121","id":"70730529-239a-48e1-9181-a7021a581dfb","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"f1699ea5-ca29-4d18-a6a0-a30fd49aebe2","keyword":"E-GFRP","originalKeyword":"E-GFRP"},{"id":"2f72b954-ad7e-4938-8de4-841ff2053bc3","keyword":"角铺设单向板","originalKeyword":"角铺设单向板"},{"id":"099d74b6-684b-49a2-8dd8-edbdf6b3ba7a","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"688214cd-37b6-4f92-baa2-d85579d326aa","keyword":"失效模式","originalKeyword":"失效模式"},{"id":"0bc30aa8-243c-4aea-b5f1-560c6ed58455","keyword":"失效机制","originalKeyword":"失效机制"}],"language":"zh","publisherId":"fhclxb201202019","title":"E-GFRP单向板疲劳性能及失效机制的实验研究","volume":"29","year":"2012"},{"abstractinfo":"本文建立一种基于压缩薄膜效应(Compressive Membrane Action,CMA)的采用GFRP筋作为体外约束构件的预制混凝土桥面板,并对其在静力荷载作用下的工作性能进行试验研究.通过将试验与传统桥梁面板结构进行对比发现,本文采用GFRP的新型预制桥面板与传统桥梁面板结构相比,极限承载力提高了57%左右;采用GFRP材料作为体外约束构件,合理使用面板内压缩薄膜效应作为承载机制,充分利用GFRP材料良好的抗拉性能和耐久性提高了结构的可持续性.","authors":[{"authorName":"杨健彬","id":"c78764f1-e98c-4496-b357-fa9b41860764","originalAuthorName":"杨健彬"},{"authorName":"郑愚","id":"da4bcec6-584a-491f-b4d9-022fe15b60b4","originalAuthorName":"郑愚"},{"authorName":"魏木旺","id":"acdcfbe4-8f41-4339-b008-1cbf5346e5ba","originalAuthorName":"魏木旺"}],"doi":"","fpage":"41","id":"c178acc4-8544-4c04-a2e3-e461212ee1fe","issue":"12","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"d8c0413b-c4b8-4b85-a505-48b854f3e977","keyword":"预制桥面板","originalKeyword":"预制桥面板"},{"id":"f511a2aa-6a3a-4fec-897b-c7f2ab827c7e","keyword":"GFRP筋","originalKeyword":"GFRP筋"},{"id":"b8c5aa20-3365-43da-b81f-a9cf7b41569b","keyword":"压缩薄膜效应","originalKeyword":"压缩薄膜效应"},{"id":"b2b93672-ae9c-48b7-a09b-3d13bbb5ef06","keyword":"结构试验","originalKeyword":"结构试验"}],"language":"zh","publisherId":"blgfhcl201412007","title":"采用GFRP筋作为约束构件的体内不配筋混凝土板带的工作性能研究","volume":"","year":"2014"},{"abstractinfo":"提出了带有T形肋板的GFRP折形底板,通过肋板孔中混凝土、贯通筋与混凝土浇筑形成桥面板的结构形式,制作了由两个GFRP底板单元组成的模板试件,通过灌沙的方式模拟施工时混凝土浇筑过程的荷载作用,探讨了GFRP加肋折形底板作为无支撑模板使用的可行性.结果表明,所设计的GFRP加肋折形模板的刚度和强度满足相关施工规范的要求.","authors":[{"authorName":"刘玉擎","id":"1ad5b1ee-decd-48f1-b13b-db7a67d64cb0","originalAuthorName":"刘玉擎"},{"authorName":"范海丰","id":"89020e41-2884-4c06-a1b5-39dbf2efb9c6","originalAuthorName":"范海丰"},{"authorName":"代亮","id":"6cb25dca-e377-4bb9-aca9-a41750fa2756","originalAuthorName":"代亮"}],"doi":"10.3969/j.issn.1003-0999.2010.06.005","fpage":"18","id":"ce4461c0-28e6-4535-974d-2af2713273f4","issue":"6","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"68cd41a8-be85-4961-90f7-a9b4b6baa992","keyword":"桥梁工程","originalKeyword":"桥梁工程"},{"id":"5f9ad445-2730-4ecb-a640-e1747578d4d3","keyword":"模板","originalKeyword":"模板"},{"id":"d37f3a74-f7c9-4a90-a42d-cb564bcf05e0","keyword":"试验研究","originalKeyword":"试验研究"},{"id":"28132ac2-afe3-48cc-9742-ac435b2759f0","keyword":"GFRP","originalKeyword":"GFRP"}],"language":"zh","publisherId":"blgfhcl201006005","title":"GFRP加肋折形模板施工过程模拟试验","volume":"","year":"2010"},{"abstractinfo":"对于新型GFRP组合梁桥结构,其设计主要由刚度控制.借鉴传统弹性等效原理,将材料和结构两个层次上均为正交异性的GFRP组合桥面等效为工程上通用的正交异性板,从而达到利用已有成熟计算方法进行计算的目的.本文对拉挤成型GFRP桥面系统中间纤维管组的弹性等效进行了分析,建立了将拉挤成型GFRP桥面中间管组等效为几何尺寸完全相同的正交各向异性板的等效模式,并通过有限元计算对提出的等效方法进行验证.结果表明,本文所述方法对拉挤成型GFRP组合桥面系统的中间管组进行等效是有效可靠的.","authors":[{"authorName":"倪章军","id":"e79022f6-e7b8-4c04-b467-c65305ca54cb","originalAuthorName":"倪章军"},{"authorName":"李建中","id":"8c6426f4-c6c5-4c43-bea6-c6f5d21c922c","originalAuthorName":"李建中"},{"authorName":"王春苗","id":"a9032156-a068-4c16-9d25-1d0bedbbb465","originalAuthorName":"王春苗"}],"doi":"10.3969/j.issn.1003-0999.2007.03.005","fpage":"15","id":"78871e40-6a52-4ffa-b5e5-8bd21d8cee2a","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"f368ad4a-b5e7-41fc-8d73-f924f473cc2c","keyword":"拉挤成型GFRP桥面","originalKeyword":"拉挤成型GFRP桥面"},{"id":"78b7cf11-6442-4ff0-9b3a-63b85a9bbf7e","keyword":"中间纤维管组","originalKeyword":"中间纤维管组"},{"id":"f733086f-27e4-4e4c-a425-2752746600fb","keyword":"力学等效","originalKeyword":"力学等效"},{"id":"a605ca20-11fc-4062-9cab-e4eb4208f036","keyword":"三维有限元模型","originalKeyword":"三维有限元模型"}],"language":"zh","publisherId":"blgfhcl200703005","title":"拉挤成型GFRP桥面中间管组力学等效研究","volume":"","year":"2007"},{"abstractinfo":"玻璃纤维增强树脂(GFRP)-混凝土组合梁由上部混凝土板和下部 GFRP型材以及连接二者的抗剪连接件组成。开展了2根 GFRP-混凝土组合梁(非预应力及施加体外预应力组合梁各1根)在1年持续载荷下行为的试验研究。考虑混凝土收缩徐变及 GFRP型材蠕变耦合的影响,开展了50年的24根 GFRP-混凝土组合梁时随有限元参数分析。结果表明:在1年持续载荷下,非预应力与施加体外预应力组合梁长期挠度分别为其初始挠度的1.42倍及2.91倍;非预应力与预应力组合梁中连接件的长期滑移分别为0.230 mm及0.164 mm,相比初始滑移2种组合梁的最终滑移分别增加了53.3%和58.2%;50年后,非预应力组合梁长期挠度与初始挠度的比值在1.50~1.56之间;而施加体外预应力组合梁长期挠度与初始挠度的比值在3.03~6.08之间。基于以上研究提出了 GFRP-混凝土组合梁长期挠度的计算建议。","authors":[{"authorName":"薛伟辰","id":"2d80acc5-279a-4d3c-9821-87fae00a4484","originalAuthorName":"薛伟辰"},{"authorName":"张士前","id":"e29190c6-df38-48b3-8715-6aac2d6c6f30","originalAuthorName":"张士前"},{"authorName":"梁智殷","id":"82333b74-3f2e-4b0f-a38c-82416b56816a","originalAuthorName":"梁智殷"}],"doi":"10.13801/j.cnki.fhclxb.20160112.004","fpage":"998","id":"2a8842b9-e49b-4c05-9eee-b416884916c7","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"d06af9d5-40be-41b4-a79a-4a2eb363727b","keyword":"GFRP-混凝土组合梁","originalKeyword":"GFRP-混凝土组合梁"},{"id":"2241b99f-f32c-4748-ba16-5022a418ca29","keyword":"混凝土收缩徐变","originalKeyword":"混凝土收缩徐变"},{"id":"aac49f33-7f9f-43b0-8ce9-1c69adadc03b","keyword":"GFRP蠕变","originalKeyword":"GFRP蠕变"},{"id":"eb2fb0fc-534e-469a-aa21-52472efeaaaf","keyword":"1年持续载荷","originalKeyword":"1年持续载荷"},{"id":"05115f60-7663-4963-8d53-1a650c14217e","keyword":"长期挠度","originalKeyword":"长期挠度"},{"id":"b02e28c5-ad0a-48c2-bad0-6cd5a2b01395","keyword":"有限元参数分析","originalKeyword":"有限元参数分析"},{"id":"071a4986-60a9-4b40-9e91-0cb86ba17348","keyword":"计算建议","originalKeyword":"计算建议"}],"language":"zh","publisherId":"fhclxb201605007","title":"1年持续载荷下GFRP-混凝土组合梁长期性能试验","volume":"33","year":"2016"},{"abstractinfo":"为减小GFRP桥面板在荷载作用下的局部挠度,在原有GFRP桥面板的芯管中增加一个腹板.对改进后的GFRP桥面板进行参数分析,研究新增腹板厚度和倒角半径对GFRP桥面板力学性能的影响.分析结果表明,随着新增腹板厚度的增加,改进后GFRP桥面板的整体挠度和局部挠度逐渐减小,首层破坏荷载逐渐增大.但新增腹板厚度大于8mm时,改进后的GFRP桥面板的整体挠度和局部挠度减小的趋势逐渐变缓.新增腹板倒角半径对改进后GFRP桥面板的挠度影响很小,首层破坏荷载随着倒角半径的增大先增大后减小.","authors":[{"authorName":"周林云","id":"a4f88359-48d4-48d3-be26-fe861579bece","originalAuthorName":"周林云"},{"authorName":"万水","id":"27512fb1-0bef-481c-88ae-1193c9cb9347","originalAuthorName":"万水"}],"doi":"10.3969/j.issn.1003-0999.2011.05.007","fpage":"41","id":"a1a0e5b0-d449-4644-9f03-635c46a7b666","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"64bd464a-4475-48c2-b257-8088b0865ae1","keyword":"GFRP桥面板","originalKeyword":"GFRP桥面板"},{"id":"0a53962a-610e-4f18-b629-3394d7dd2662","keyword":"参数分析","originalKeyword":"参数分析"},{"id":"2153ea95-00b1-4b27-96a8-4717ba65d9bc","keyword":"力学特性","originalKeyword":"力学特性"},{"id":"ec9280da-e82d-48c1-bea3-f8422f5f9141","keyword":"有限元法","originalKeyword":"有限元法"}],"language":"zh","publisherId":"blgfhcl201105007","title":"GFRP桥面板截面设计与结构分析","volume":"","year":"2011"},{"abstractinfo":"本文运用非线性全过程分析方法分析了GFRP筋增强混凝土梁和钢筋混凝土梁不同的受荷-变形性能,指出针对GFRP筋的强刚度特性,为充分利用GFRP筋的高强特性,有必要采用预应力构件,文章进一步分析了预应力GFRP筋增强混凝土梁的受荷- 变形性能。","authors":[{"authorName":"袁国青","id":"6a9e6b18-0b1a-489c-a9af-149657dba094","originalAuthorName":"袁国青"}],"doi":"10.3969/j.issn.1003-0999.2001.01.002","fpage":"5","id":"af315b0c-4d93-4ca3-a6e9-a555b371031e","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"8de7a518-eb23-4b8e-981d-8a1211158eb5","keyword":"GFRP筋混凝土梁预应力非线性全过程分析","originalKeyword":"GFRP筋混凝土梁预应力非线性全过程分析"}],"language":"zh","publisherId":"blgfhcl200101002","title":"GFRP筋增强混凝土梁受力性能分析","volume":"","year":"2001"}],"totalpage":505,"totalrecord":5044}