{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用水热法合成了碳包埋磁性纳米复合颗粒C/(Au@Fe),并以之为载体制备了纳米钯催化剂,利用透射电镜、X射线光电子能谱和振动样品磁强计等手段对催化剂进行了表征,评价了催化剂对Heck反应的催化活性.结果表明,催化剂的平均粒径约为300 nm,表面覆盖着一层粒径为12 nm的钯颗粒,整个催化剂呈现超顺磁性.对于碘代苯与丙烯酸之间的Heck反应,在乙酸钠或三乙胺碱性条件下反应4 h,碘代苯转化率可达95%以上.催化剂重复使用10次时仍可保持很高的催化活性(碘代苯转化率88%).对于其他不同反应底物之间的Heck反应,催化剂同样显示有较高的催化活性.催化剂可稳定分散于反应体系中,并可在外磁场作用下快速与反应体系分离.","authors":[{"authorName":"沈彬","id":"98c491b7-3870-40ba-8126-24f678b3d6f4","originalAuthorName":"沈彬"},{"authorName":"李游","id":"2b0146f7-a660-4f1f-ac78-5a7c1bfcd6ed","originalAuthorName":"李游"},{"authorName":"王志飞","id":"882ff0d2-007a-499f-955f-10392237dbd9","originalAuthorName":"王志飞"},{"authorName":"何农跃","id":"6f1c5f89-dfd1-4eec-a1eb-d6523d2e4dc3","originalAuthorName":"何农跃"}],"doi":"","fpage":"509","id":"ca79152b-b312-402b-8a58-2a899865565b","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"c3d6ef05-2035-4b1a-85df-f8d162c652ec","keyword":"钯","originalKeyword":"钯"},{"id":"251a12ea-b334-402d-a976-07d3362bf6ec","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"e17c31f0-a5fb-473f-bb82-5619fc61e17e","keyword":"磁性纳米复合颗粒","originalKeyword":"磁性纳米复合颗粒"},{"id":"5289297a-7999-40e4-be1a-9ba96acfb5ef","keyword":"水热法","originalKeyword":"水热法"},{"id":"f3c99c47-f0ce-4564-bf67-8bdf7d843f7a","keyword":"碘代苯","originalKeyword":"碘代苯"},{"id":"5df31c0b-f63a-46dc-8873-92e7cda0dd4d","keyword":"丙烯酸","originalKeyword":"丙烯酸"},{"id":"f82a22ca-3fc1-49b8-a2ff-33615259f61a","keyword":"Heck反应","originalKeyword":"Heck反应"}],"language":"zh","publisherId":"cuihuaxb200706007","title":"磁性纳米颗粒负载钯催化剂对Heck反应的催化活性","volume":"28","year":"2007"},{"abstractinfo":"首先通过化学共沉淀法制备出Fe3O4磁性纳米颗粒,考察了表面活性剂的用量、碱的用量、陈化时间以及三价铁与二价铁的摩尔比等因素对Fe3O4纳米颗粒性能的影响。制备出饱和磁化强度为73.85A.m2/kg、粒径大小为10nm以下的Fe3O4纳米颗粒。在此基础上,制备出Fe3O4/Au复合纳米颗粒,通过VSM、TEM、XRD、XPS对产物进行了表征,研究了HAuCl4的用量、还原剂的种类、硅烷偶联剂以及包金之前的Fe3O4纳米颗粒复合颗粒的影响,结果表明所制得的Fe3O4/Au复合磁性纳米颗粒包覆良好,粒径大小为50~200nm,饱和磁化强度为10.08A.m2/kg。","authors":[{"authorName":"李德才","id":"70c5ba6f-5f94-4331-be42-4c17914f3e5a","originalAuthorName":"李德才"},{"authorName":"张少兰","id":"9827a69f-8366-429a-89b1-a3b823314e77","originalAuthorName":"张少兰"},{"authorName":"李剑玲","id":"6087bbe6-4718-4eb7-aeca-4c6d5f05f86f","originalAuthorName":"李剑玲"},{"authorName":"崔红超","id":"c98c3b68-5671-4090-a3f9-5493b9f9808a","originalAuthorName":"崔红超"}],"doi":"","fpage":"1429","id":"95541c7d-9e49-4225-af9d-a463f7a62e25","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6727d334-68f3-4681-a52e-4e5d988b0d19","keyword":"Fe3O4/Au","originalKeyword":"Fe3O4/Au"},{"id":"abdb57e0-ee15-4c35-8fbd-bc099f19dda3","keyword":"核壳结构","originalKeyword":"核壳结构"},{"id":"fe526cbc-0627-4bcf-804e-647fc5079985","keyword":"纳米复合颗粒","originalKeyword":"纳米复合颗粒"}],"language":"zh","publisherId":"gncl201108022","title":"Fe_3O_4/Au复合磁性纳米颗粒的制备及其表征","volume":"42","year":"2011"},{"abstractinfo":"利用化学液相共沉淀法制备出不同尺寸、具有超顺磁性纳米磁性Fe3O4/BSA颗粒,经分散后包覆蛋白使其具备良好的生物兼容性,该颗粒可长期、稳定地分散在溶液中.在外加交变磁场(414kA/m,50Hz)下纪录不同颗粒的浊度变化率,并利用光透射性可即时测得介质中浑浊程度与时间的关系,结合浊度-浓度拟合曲线,计算出在外加磁场作用下,磁性纳米复合颗粒对外加磁场的响应程度,半定量计算出相同时间下不同尺寸的微粒吸附在管壁上的质量百分比.结果显示,稳定在介质中的纳米磁性颗粒在外加磁场后,磁响应性随颗粒尺寸增大而增大,颗粒大小分别为10、108和210nm,所对应的磁响应性分别为6%、10%和12%;在外加磁场30s后,该磁性纳米复合颗粒在管壁附着的质量百分比分别为39.9%、70.4%及86.7%.","authors":[{"authorName":"杨采桦","id":"0a767915-5d5d-446a-8de5-d4f688e77d1f","originalAuthorName":"杨采桦"},{"authorName":"孙前进","id":"5da83fa6-289d-4302-9a9b-8fb97bfcfcdb","originalAuthorName":"孙前进"},{"authorName":"梁工英","id":"ddebb5d7-d79e-49f9-a77b-3e9ab093ca62","originalAuthorName":"梁工英"}],"doi":"","fpage":"1702","id":"0c3037f0-f978-406d-9678-ba7058b5044f","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2dc5c8cf-3274-4713-919b-056460255844","keyword":"磁响应性","originalKeyword":"磁响应性"},{"id":"47260aca-5ad9-4d28-a3d1-953a1fbfea0b","keyword":"复合纳米粒子","originalKeyword":"复合纳米粒子"},{"id":"f3d28ed2-6ad1-42a0-b58e-00ec89ea1267","keyword":"超顺磁性","originalKeyword":"超顺磁性"},{"id":"bcd937fa-ba35-4c3d-9e11-c1e9bffe4eba","keyword":"Fe3O4磁流体","originalKeyword":"Fe3O4磁流体"}],"language":"zh","publisherId":"gncl201010009","title":"Fe3O4/BSA纳米磁性复合颗粒的磁响应性能","volume":"41","year":"2010"},{"abstractinfo":"采用磁控溅射工艺和复合靶技术制备FeCoB-SiO2磁性纳米颗粒膜;利用X射线衍射仪、扫描探针显微镜分析这类薄膜的微结构和形貌特征;采用振动样品磁强计、四探针法、微波矢量分析仪及谐振腔法测量薄膜试样的磁电性能和微波复磁导率;重点对SiO2介质相含量、薄膜微结构对电磁性能产生重要影响的机理做了分析和探讨.结果表明,这类FeCoB-SiO2磁性纳米颗粒膜具有良好的软磁性能和高频电磁性能,2GHz时,磁导率μ>50,可以应用于高频微磁器件中.","authors":[{"authorName":"何华辉","id":"fe7b20ed-4781-43bd-94e0-cb915e78630f","originalAuthorName":"何华辉"},{"authorName":"邓联文","id":"ce445ce1-3d94-42d1-b557-cb90e2e5c3c6","originalAuthorName":"邓联文"},{"authorName":"冯则坤","id":"f0f44639-9682-4cff-b8e3-938f7524d6ff","originalAuthorName":"冯则坤"},{"authorName":"江建军","id":"c38e2cc4-b198-43be-8e77-b7b5da4c45df","originalAuthorName":"江建军"}],"doi":"","fpage":"60","id":"0069f09f-2abe-45bd-ac9d-95963875a078","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9ea88582-33cb-41b9-943c-4b58519ec13b","keyword":"纳米颗粒膜","originalKeyword":"纳米颗粒膜"},{"id":"a0800b22-b973-41b9-8eb6-96deb93b8ec2","keyword":"微波物性","originalKeyword":"微波物性"},{"id":"d9f6c35d-6029-49ae-8fbc-491674462f9a","keyword":"复磁导率","originalKeyword":"复磁导率"},{"id":"f6fb1c94-8d31-40de-9e65-d864ce8a9eb2","keyword":"微磁器件","originalKeyword":"微磁器件"}],"language":"zh","publisherId":"gncl2004z1010","title":"磁性纳米颗粒膜微波物性研究","volume":"35","year":"2004"},{"abstractinfo":"核-壳结构纳米磁性颗粒作为一种新型材料,具有广泛的应用前景,克服了磁性粒子易于团聚、化学稳定性不高、易受氧化、表面羟基不足等缺点。文中综述了Fe3O4/聚合物和Fe3O4/SiO2两大类核-壳结构的纳米磁性复合颗粒的化学制备方法,包括溶胶-凝胶法、硅烷化反应法、聚合法、自组装法、超声波法、高温合成法、凝结法、超临界流体乳剂萃取法与膨胀-热解技术等,以及它们在电子信息、石油化工、环境保护、航空材料、生物医学等领域的应用进展。","authors":[{"authorName":"刘德新","id":"b1098693-0562-4013-b496-bd9727bac245","originalAuthorName":"刘德新"},{"authorName":"汪小平","id":"5878d341-5122-418a-aa03-ef0ec939d9f1","originalAuthorName":"汪小平"},{"authorName":"韩树柏","id":"bd25180a-eedb-4965-b318-f05754f1b343","originalAuthorName":"韩树柏"},{"authorName":"赵修太","id":"c0238033-e645-4f29-ad09-723bd1f53ab1","originalAuthorName":"赵修太"}],"doi":"","fpage":"172","id":"ebdc389f-bb72-4cae-b21b-9c5d4fd12d66","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"653346c1-1cf1-46cd-a02d-a3990d5ec67a","keyword":"四氧化三铁","originalKeyword":"四氧化三铁"},{"id":"983ccf80-c573-4ef4-ba23-dbe7a02bbf58","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"0a487cd6-1b5b-4a2e-b1e2-c4c758dc152d","keyword":"核-壳结构","originalKeyword":"核-壳结构"},{"id":"f94fe097-5050-4d49-a61b-9c8e1dbfab99","keyword":"化学制备","originalKeyword":"化学制备"},{"id":"40113705-53e6-42f1-8d24-573a0642255b","keyword":"应用进展","originalKeyword":"应用进展"}],"language":"zh","publisherId":"gfzclkxygc201112060","title":"核-壳结构纳米磁性复合颗粒的化学制备及应用进展","volume":"27","year":"2011"},{"abstractinfo":"结合共沉淀法和氢气还原法成功制备出Fe-Ni/NiFe2 O4纳米复合颗粒,所制备的纳米复合颗粒包含NiFe2 O4和 Fe-Ni 合金,其中 Fe-Ni 合金具有体心立方和面心立方两种结构。用 XRD 和 TEM对所得样品进行结构分析。用 SQUID 测量样品在室温时的磁滞回线,发现 Fe-Ni/NiFe2 O4纳米复合颗粒的矫顽力和饱和磁化强度与制备态 NiFe2 O4纳米颗粒相比随着退火时间的增加呈现出逐渐增加的趋势。为了进一步研究所制备的纳米复合颗粒磁性特征,测量退火时间相同而退火温度不同的两个样品在零磁场冷却(ZFC)和带磁场冷却(FC)条件下的M-T 曲线。","authors":[{"authorName":"杨柳","id":"07596067-dd68-47da-b94d-972e9ff60e94","originalAuthorName":"杨柳"},{"authorName":"何峻","id":"13e2fe32-2a55-4356-8384-abfe2fe3a6cd","originalAuthorName":"何峻"},{"authorName":"安静","id":"cee3561f-a980-443b-b5f2-a64c6a8d87df","originalAuthorName":"安静"},{"authorName":"赵栋梁","id":"c37907be-9519-4b19-bb2f-3e1661fc979d","originalAuthorName":"赵栋梁"}],"doi":"10.3969/j.issn.1001-9731.2015.11.010","fpage":"11047","id":"74b64bd6-c388-4b94-9a6d-c346ef5510e3","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"18173411-5057-4563-94a3-69a78b55af28","keyword":"磁性纳米颗粒","originalKeyword":"磁性纳米颗粒"},{"id":"f34ef2ae-5b03-4876-a06a-a2e5b4b4d138","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"b77955a7-daea-49d8-a94c-ab599de2510a","keyword":"核壳结构","originalKeyword":"核壳结构"}],"language":"zh","publisherId":"gncl201511010","title":"Fe-Ni/NiFe2O4纳米复合颗粒的制备与磁性研究?","volume":"","year":"2015"},{"abstractinfo":"磁性纳米颗粒由于晶粒尺寸处于纳米级,可以做到完全单畴,很多研究表明这种结构下其磁性能与同样相成分的块体材料相比,具有明显的不同.本文采用磁控溅射方法得到非晶SmFe薄膜,通过时效处理后,得到均匀分布在铜基体上的磁性纳米颗粒.研究表明,颗粒磁性能随着晶粒尺寸变化而发生明显的变化.","authors":[{"authorName":"李晓园","id":"00725849-f98d-492d-ba3c-ec0a9dda44b6","originalAuthorName":"李晓园"},{"authorName":"祝要民","id":"16321535-63d4-46c6-ae13-483825d93368","originalAuthorName":"祝要民"},{"authorName":"宋晓平","id":"9a31b913-44b3-4cfb-b46c-6732a62e3682","originalAuthorName":"宋晓平"},{"authorName":"陈强","id":"f5644cf0-f38b-4225-a58f-3d0104d14bcd","originalAuthorName":"陈强"}],"doi":"10.3969/j.issn.1005-8192.2003.01.005","fpage":"13","id":"45090247-80de-44ea-bc3a-f3f73ba3bc43","issue":"1","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"1f5451de-069d-495d-8a87-d2b6aac317fa","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"5f32efae-022a-4b25-b7a7-5c073e53e68f","keyword":"磁性能","originalKeyword":"磁性能"},{"id":"7f2f9a49-d853-42fb-a4b8-bbfea7977478","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"34699f51-be05-4aa4-a96d-329b1378a30f","keyword":"磁性薄膜","originalKeyword":"磁性薄膜"}],"language":"zh","publisherId":"jsgncl200301005","title":"SmFe纳米颗粒磁性能研究","volume":"10","year":"2003"},{"abstractinfo":"具有核-壳结构的金纳米包覆的磁性纳米粒子,既具有磁性纳米粒子的特点又增加了金纳米的表面化学性质,近年来受到研究人员的广泛关注。简要综述了近年来国内外制备2类核-壳结构的金包铁磁性纳米复合材料的研究进展及相关应用,并对其应用前景进行了展望。","authors":[{"authorName":"石运芹","id":"66940f40-8741-4753-b072-e202d198b375","originalAuthorName":"石运芹"},{"authorName":"李梅金","id":"b48606ce-7e6b-436e-aea4-bdfd37bef282","originalAuthorName":"李梅金"}],"doi":"","fpage":"2425","id":"e4b00ea3-bc1e-4d10-8088-a5455c3bce9d","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"742424c9-d374-4789-b976-03a6a1314c0a","keyword":"金纳米","originalKeyword":"金纳米"},{"id":"703d33b6-65ff-4c3f-be2e-aa31f3f8b9ce","keyword":"磁性纳米粒子","originalKeyword":"磁性纳米粒子"},{"id":"9cb35e56-7821-4122-baf5-bd96789e4eec","keyword":"核-壳结构","originalKeyword":"核-壳结构"}],"language":"zh","publisherId":"gncl201218001","title":"具有核-壳结构的金纳米包覆磁性纳米复合颗粒的研究进展","volume":"43","year":"2012"},{"abstractinfo":"采用浸渍-还原法制备多孔Al2O3负载纳米Fe颗粒复合材料.利用X射线衍射仪(XRD)、穆斯堡尔谱仪(M(o)ssbauer)和振动样品磁强计(VSM)对样品的微观结构及磁性能进行了研究.发现铁元素以纳米级单质Fe颗粒和超顺磁态α-Fe2O3(< 20 nm)的形式存在.通过穆谱知,氢气气氛600 ℃还原3 h, 59.9%铁元素转变为单质铁.浸渍-还原方法能在较低温度下成功制备不同组成、微观结构及磁性能的多孔磁性材料.","authors":[{"authorName":"刘守宪","id":"5efaf569-cff4-4b49-b1e6-e413579e3ec3","originalAuthorName":"刘守宪"},{"authorName":"史志成","id":"4b394e3d-68ea-4c5c-9e71-ee883395d126","originalAuthorName":"史志成"},{"authorName":"张子栋","id":"1637d50f-a2ae-42e1-8ca4-418a2ccbcf41","originalAuthorName":"张子栋"},{"authorName":"范润华","id":"cec0c9d1-e4a0-4d00-810d-2fe4b21dbb5d","originalAuthorName":"范润华"}],"doi":"","fpage":"1429","id":"73136ace-bc73-4528-866a-0ffa979aa60d","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"43857d5c-9222-4f45-93f7-0e73c56f21e0","keyword":"浸渍-还原法","originalKeyword":"浸渍-还原法"},{"id":"1db43e76-d37d-49f2-b2bf-c96373951e54","keyword":"多孔氧化铝","originalKeyword":"多孔氧化铝"},{"id":"d6937a5b-604a-4893-b60a-9919012578f2","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"0f4e579f-7c70-49df-adea-1fb6f941a227","keyword":"磁性能","originalKeyword":"磁性能"}],"language":"zh","publisherId":"gsytb201006036","title":"多孔Al2O3负载纳米Fe颗粒复合材料的微观结构与磁性能","volume":"29","year":"2010"},{"abstractinfo":"磁性纳米颗粒目前是生物医用纳米材料领域异常活跃的方向之一.不同方法制备的磁性纳米颗粒经不同聚合物或分子表面改性后具有多方面的生物医学应用.本文综合评述了磁性纳米颗粒的制备方法,如共沉淀法、溶胶-凝胶法、微乳剂法等;总结了磁性纳米颗粒表面改性技术,包括改性物质与改性方法;概括了磁性纳米颗粒在生物医学领域的应用,主要涉及磁靶向制剂、细胞分离、肿瘤细胞的过热治疗、MRI衬度增强剂四方面.磁性纳米颗粒还有很大的发展空间和广阔的应用前景.","authors":[{"authorName":"徐晓雪","id":"95f6c2cc-286a-464f-9955-9b26f48f7ccd","originalAuthorName":"徐晓雪"},{"authorName":"李莉","id":"5ff5b0ef-777c-44a8-8bc6-f237f702b2a0","originalAuthorName":"李莉"},{"authorName":"郑玉峰","id":"236d1ec9-e49c-44eb-9af4-838c43cc006e","originalAuthorName":"郑玉峰"}],"doi":"10.3969/j.issn.1005-0299.2008.04.030","fpage":"562","id":"4511549c-76b8-4cff-b472-d51c8fa3d55c","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"3d74b746-1247-476e-b7da-5beaf6d0f53e","keyword":"磁性纳米颗粒","originalKeyword":"磁性纳米颗粒"},{"id":"9739c867-a7eb-49f8-98b0-e3cbb5c9b08f","keyword":"制备","originalKeyword":"制备"},{"id":"5beda281-0f31-4b71-a16b-1150d51a5ba3","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"180aa517-0f5d-43d5-b2ee-966f6f0bd2fd","keyword":"生物医学应用","originalKeyword":"生物医学应用"}],"language":"zh","publisherId":"clkxygy200804030","title":"生物医用磁性纳米颗粒的制备与表面改性","volume":"16","year":"2008"}],"totalpage":5871,"totalrecord":58706}