{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用层层自组装法,以氧化硅微球为模板制备了壳聚糖(CS)/氧化石墨烯(GO)微球,去核后成功地制备了CS/G O 中空微胶囊。研究了组装次数、壳聚糖浓度和交联剂京尼平对微球及中空微胶囊形貌的影响,并以布洛芬为药物模型研究了CS/G O 中空微胶囊的载药性能及药物缓释性能。实验结果表明, CS/G O中空微胶囊具有完整的中空结构,粒径在760 n m左右。增加包裹层数和提高包裹溶液中的壳聚糖浓度都可以增加囊壁的厚度。经交联处理后, CS/G O微胶囊的囊壁更加致密和完整,其对布洛芬的载药率从19%提高至72%,释药时间从10 h延长至60 h。","authors":[{"authorName":"蒋雷","id":"01bfbf9a-b23f-4395-898d-54e8532dc283","originalAuthorName":"蒋雷"},{"authorName":"李延报","id":"5fb1c9e7-88fa-4d94-9121-7537f23bc6b0","originalAuthorName":"李延报"},{"authorName":"姚松","id":"22926a66-43dd-4d97-bbe4-89bd7e2b79c9","originalAuthorName":"姚松"},{"authorName":"周志航","id":"1dc49779-c183-41d6-bcb5-f29909bb83ac","originalAuthorName":"周志航"}],"doi":"10.3969/ji.ssn1.001-97312.0151.60.21","fpage":"16119","id":"1dc60646-8065-4507-ae0c-885dbfab7a22","issue":"16","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ad2405ba-9ee2-4521-822a-3577c1fd7573","keyword":"氧化硅","originalKeyword":"氧化硅"},{"id":"f29cae58-df4a-4abe-8374-7a9755621398","keyword":"氧化石墨烯","originalKeyword":"氧化石墨烯"},{"id":"2513e5d1-4666-4eaf-a4ad-09ca43370557","keyword":"壳聚糖","originalKeyword":"壳聚糖"},{"id":"267d81c7-c3b9-485b-924a-772bd84687ff","keyword":"微胶囊","originalKeyword":"微胶囊"},{"id":"cb14f0e9-8c12-4d14-aa0b-a2190da2687c","keyword":"药物载体","originalKeyword":"药物载体"}],"language":"zh","publisherId":"gncl201516026","title":"作为药物载体的壳聚糖/氧化石墨烯中空微胶囊的制备","volume":"","year":"2015"},{"abstractinfo":"基于显式非线性有限元数值仿真分析方法,建立不同构型等壁厚加筋正六角铝蜂窝的全尺度精细离散模型,对比不同形式加筋蜂窝低速10m/s异面加载时力学特性的变化,评估出双筋加筋形式强于单筋形式,双厚强于单厚的加筋构型.研究加筋板厚度与蜂窝胞元壁厚间的匹配效应,通过改变筋板厚度,分析加筋板厚对蜂窝整体屈曲模式的影响,并采用等效表观密度特征因子评价加筋蜂窝的屈曲模式改变对整体力学特性影响的贡献度,发现筋胞匹配间存在明显的“分离点”,当所加筋板小于一定厚度时,加筋蜂窝的平台区平齐、完整,但随厚度增加,其响应特性突变,平台区波动剧增,超出此厚度比例构造的加筋型蜂窝其功用将受到影响;1.5倍胞壁厚加筋的蜂窝力学性能稳定,平台强度提升显著,是最优的筋厚选择方案.","authors":[{"authorName":"王中钢","id":"793a3546-cc79-438a-8b1a-75016df2e625","originalAuthorName":"王中钢"},{"authorName":"姚松","id":"3fc21a59-7be2-4121-8196-7b5ed5d2446e","originalAuthorName":"姚松"}],"doi":"10.3969/j.issn.1005-5053.2013.3.016","fpage":"86","id":"4e32b11a-6bdb-48fd-b7b9-497e746630f4","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"366d5c2e-429d-4c76-ba72-82751de7227d","keyword":"铝蜂窝","originalKeyword":"铝蜂窝"},{"id":"0c124e1e-ba23-43e2-82bf-f1240d01e0cf","keyword":"加筋","originalKeyword":"加筋"},{"id":"443e9222-fa04-4a9f-aec8-415d9f21e26e","keyword":"力学特性","originalKeyword":"力学特性"},{"id":"4f5b6123-a1fc-45b3-8328-f727b2987a63","keyword":"匹配效应","originalKeyword":"匹配效应"}],"language":"zh","publisherId":"hkclxb201303016","title":"加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化","volume":"33","year":"2013"},{"abstractinfo":"采用热等静压(HIP)工艺制备连续碳纤维(CF)增强Al基复合材料。利用扫描电镜、粒度仪和X射线衍射仪表征2A12铝合金粉末形貌、粒度分布和相组成;利用光学显微镜、扫描电镜和能谱仪观察复合材料的显微组织、断口形貌和界面扩散反应特征,并对其主要力学性能进行测试。结果表明:粉末形貌呈球形,粒度主要分布在150~180μm;复合材料致密,界面连接紧密无孔洞缺陷;与基体铝合金材料相比,复合材料的拉伸强度和断后伸长率分别提高5%和54%,断裂方式为脆性断裂;Al基体裂纹起源于粉末颗粒界面,CF/Al界面断口呈现CF拔出和断裂失效形式;CF/Al界面发生元素扩散,界面反应生成Al 4 C 3金属间化合物。","authors":[{"authorName":"喻思","id":"2e3f882a-9ccd-48f4-bc3e-a3a045f73785","originalAuthorName":"喻思"},{"authorName":"郎利辉","id":"be6eaea5-c0ea-4600-8b81-29771055991a","originalAuthorName":"郎利辉"},{"authorName":"姚松","id":"bd635f53-a22c-455d-90e9-24fd7f1668ae","originalAuthorName":"姚松"},{"authorName":"王刚","id":"a69457d1-3296-46c8-bcc7-5fe41aa35757","originalAuthorName":"王刚"},{"authorName":"黄西娜","id":"c2d0837e-b2b2-4fdb-a27a-8136de833076","originalAuthorName":"黄西娜"},{"authorName":"续秋玉","id":"fc12f092-63c3-4b84-b0fd-c3e5b2d3f4a2","originalAuthorName":"续秋玉"}],"doi":"","fpage":"2745","id":"73188da7-b38e-42d5-92ff-2962aa195519","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"e9b31916-645f-4bd1-a7b1-3cd888e02e8e","keyword":"CF/Al复合材料","originalKeyword":"CF/Al复合材料"},{"id":"1c34f41a-36c0-4a05-aabd-9ac3272c3d69","keyword":"热等静压","originalKeyword":"热等静压"},{"id":"50cc0bb5-2121-4900-aa56-5521c74aa952","keyword":"失效形式","originalKeyword":"失效形式"},{"id":"1000a2be-19f2-466f-b081-77ba58ac1601","keyword":"界面反应","originalKeyword":"界面反应"}],"language":"zh","publisherId":"zgysjsxb201510016","title":"热等静压制备CF/Al复合材料的微观结构及性能","volume":"","year":"2015"},{"abstractinfo":"利用不同价态的镍的氧化物(NiOx)为脱氢催化剂,活性炭(AC)为成炭促进剂,制备出了高效成炭阻燃材料,并研究了Ni的价态和AC含量及配比对聚丙烯(PP)催化成炭中PP自身成炭的影响.实验结果表明,NiO与AC协同具有显著的催化成炭效果,其成炭率最高可达到32.3%;热释放速率(HRR)、质量损失速率(MLR)、热重分析表明PP/NiO/AC复合材料的HRR、MLR等燃烧特征参数均有所降低,具有较明显的阻燃性能和热稳定性;扫描电镜、高倍扫描电镜、透射电镜显示成炭结构为稳定的多壁碳纳米管(CNTs);X射线衍射结果表明NiOx高温下还原成金属Ni,Ni作为活性中心催化PP脱氢裂解.","authors":[{"authorName":"徐元元","id":"94589f4d-6993-422f-9b36-34d4ff47396d","originalAuthorName":"徐元元"},{"authorName":"公维光","id":"47100096-ce2b-4ad8-93e3-4ff5cd4c165d","originalAuthorName":"公维光"},{"authorName":"沈银龙","id":"b3f1ec19-d82a-4951-8698-51d0835da9e9","originalAuthorName":"沈银龙"},{"authorName":"姚松","id":"9b66c1b7-890f-4e15-a707-8355c9615347","originalAuthorName":"姚松"},{"authorName":"郑柏存","id":"d3dc23b8-c36b-40aa-bd67-a411c4b4ea16","originalAuthorName":"郑柏存"}],"doi":"","fpage":"52","id":"3dcf1533-26c7-4278-8bdf-c6fc0dab2e14","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8a30fc66-be34-4e20-a40b-39f4e70caf7e","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"9cbe9735-9b8d-4f58-aa45-3d2e489d1984","keyword":"镍的氧化物","originalKeyword":"镍的氧化物"},{"id":"af599b7d-0ab9-41e3-8bf6-e15a81b1bf61","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"34f251c8-61b6-45f7-9194-e170845952dc","keyword":"催化成炭","originalKeyword":"催化成炭"},{"id":"98258cc9-677e-4517-9d77-f75232a9512a","keyword":"燃烧","originalKeyword":"燃烧"}],"language":"zh","publisherId":"gfzclkxygc201601010","title":"NiOx与活性炭协效催化聚丙烯成炭及燃烧性能","volume":"32","year":"2016"},{"abstractinfo":"以姚冲大型钼多金属矿床为例,阐明了大别山北麓地区区域和矿床地质特征。通过在该地区开展岩矿石物性标本测试、综合物探剖面性研究(可控源音频大地电磁方法和频谱激电方法试验),试验及测试结果表明,姚冲钼矿床中含矿岩体为中低阻,高极化特征,姚冲钼矿床为斑岩体外接触带成矿,在深部高阻岩体的外侧存在一个低阻异常体,经钻孔验证,该低阻异常体为花岗斑岩体(脉)外接触带含辉钼矿的中元古界片麻岩。频谱激电法反演结果更进一步印证了物性测试结果和可控源音频大地电磁测深结果的准确性。因此,此次综合物探方法试验结果表明,可控源音频大地电磁测深和频谱激电法在该地区寻找斑岩型钼矿床是有效的,可为今后在该区域寻找斑岩型矿床提供技术参考。","authors":[{"authorName":"李冰","id":"dc65a649-28dc-47d8-8db1-024312fc7661","originalAuthorName":"李冰"},{"authorName":"尚建阁","id":"e954eef9-d05f-408d-803f-97fed70d75fe","originalAuthorName":"尚建阁"},{"authorName":"刘清泉","id":"75897a79-3e77-4a84-80f5-09a97fb9c23a","originalAuthorName":"刘清泉"},{"authorName":"张智慧","id":"719cd997-9746-4138-b915-4a97127e02ee","originalAuthorName":"张智慧"},{"authorName":"丁云河","id":"7a366c93-fb58-43c3-b4e6-d4bc8c2136c2","originalAuthorName":"丁云河"},{"authorName":"魏明君","id":"bd762cc1-2563-4e53-b048-019c2e67f404","originalAuthorName":"魏明君"},{"authorName":"王蒙","id":"749d2edf-03af-4586-815c-096d984d0f12","originalAuthorName":"王蒙"}],"doi":"10.11792/hj20150106","fpage":"21","id":"b4817cdb-b4dd-4360-829e-8de7f5bc0efe","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"d499d377-380d-4b7a-a3b8-4cdf4d28c530","keyword":"可控源音频大地电磁测深","originalKeyword":"可控源音频大地电磁测深"},{"id":"caea6518-fc2a-4427-b346-39df7c03d3c1","keyword":"频谱激电法","originalKeyword":"频谱激电法"},{"id":"0b1253cc-6352-4895-b452-6c6a5719c227","keyword":"斑岩型钼矿床","originalKeyword":"斑岩型钼矿床"},{"id":"164d2631-4e52-4d0a-9df6-1eb451f2e78b","keyword":"姚冲钼多金属矿床","originalKeyword":"姚冲钼多金属矿床"}],"language":"zh","publisherId":"huangj201501007","title":"综合物探方法寻找斑岩型钼矿床的应用试验研究---以姚冲钼多金属矿床为例","volume":"","year":"2015"},{"abstractinfo":"采用湿法球磨工艺,通过调整银粉和球的比例、球径大小、球磨时间制备出低松装密度片状银粉.该银粉的松装密度小于1.0 g/cm3,粒径大小可调,粉末的体积和比表面积大,已成功地应用于制备银浆,并可起到降低银含量,提高浆料粘度和导电性能的作用.","authors":[{"authorName":"李晓龙","id":"25c4280e-54fe-49dd-82c2-887eaf84390e","originalAuthorName":"李晓龙"},{"authorName":"黄富春","id":"1fc9dbba-07d4-4fce-b706-0d4515b1c722","originalAuthorName":"黄富春"},{"authorName":"李文琳","id":"6008e8bd-33fc-452d-997c-e2d1947f2ae3","originalAuthorName":"李文琳"},{"authorName":"赵玲","id":"840f7840-9658-43cd-9b3b-898a7b963266","originalAuthorName":"赵玲"},{"authorName":"陈伏生","id":"c8f077f9-1fc4-412b-abc7-f7673cea66eb","originalAuthorName":"陈伏生"}],"doi":"10.3969/j.issn.1004-0676.2012.01.004","fpage":"16","id":"49d89c85-24e3-4fd4-b613-ce648e95c1ef","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"8058b128-5dc7-4c0b-97a5-b4b0fe26399f","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"2b43ac94-938f-4a1e-8f32-4d26a6750e64","keyword":"片状银粉","originalKeyword":"片状银粉"},{"id":"013a6f13-b77b-4a64-9afa-584843c03cdd","keyword":"导电性能","originalKeyword":"导电性能"},{"id":"3f85c3cc-e3a4-4ef9-b9ce-e92c5e497e10","keyword":"银含量","originalKeyword":"银含量"},{"id":"71060ab6-b553-4b33-8bb1-2cde4d6480db","keyword":"混合银粉","originalKeyword":"混合银粉"},{"id":"5904b987-fee7-4932-aab7-b41eb2fe8192","keyword":"粘度","originalKeyword":"粘度"}],"language":"zh","publisherId":"gjs201201004","title":"低松装密度片状银粉的研究","volume":"33","year":"2012"},{"abstractinfo":"根据金属液凝固收缩理论和多孔介质中流体流动原理,建立了离心压力下Ti-Al 合金精密铸件中微观缩松缺陷预测的数学模型,采用该模型对Ti-Al 增压涡轮铸件进行模拟计算,并进行了实验验证。结果表明,数学模型能够合理反映离心转速、离心半径、温度梯度和冷却速度等重要因素对微观缩松的影响规律,数值模拟结果与实验结果相吻合。分析增压涡轮的计算结果表明,在涡轮轴向,温度梯度是影响微观缩松度如何分布的主要原因;在涡轮径向,温度梯度、冷却速度和离心半径的共同作用决定着微观缩松度的变化规律。提高温度梯度,降低冷却速度,充分利用离心压力对枝晶间补缩的有效作用,有利于减少涡轮内部的微观缩松,保证叶片和涡轮的组织致密性和力学性能。","authors":[{"authorName":"梁作俭","id":"d88e565a-b762-4764-b4fe-71f00456ab9f","originalAuthorName":"梁作俭"},{"authorName":"许庆彦","id":"d7aeb773-4e1e-47d2-bcc2-9e1fe6043f96","originalAuthorName":"许庆彦"},{"authorName":"李俊涛","id":"7a02decc-6604-456b-a1a9-18a635dd9d4d","originalAuthorName":"李俊涛"}],"categoryName":"|","doi":"","fpage":"278","id":"c9d91600-4227-4f29-9dbd-56aa75d5d5fa","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9ac44955-63da-49cc-9842-e67d8eceaa99","keyword":"Ti-Al","originalKeyword":"Ti-Al"},{"id":"fc01c7d3-713c-48a2-acd7-c2c48d91dea6","keyword":"null","originalKeyword":"null"},{"id":"04346c3f-400c-4553-8052-add4528748ce","keyword":"null","originalKeyword":"null"},{"id":"9e6799d6-d713-4246-b5bf-ac4f38ee6a9a","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_3_21","title":"Ti-Al合金精密铸件微观缩松预测","volume":"39","year":"2003"},{"abstractinfo":"根据金属液凝固收缩理论和多孔介质中流体流动原理,建立了离心压力下Ti-Al合金精密铸件中微观缩松缺陷预测的数学模型,采用该模型对Ti-Al增压涡轮铸件进行模拟计算,并进行了实验验证.结果表明,数学模型能够合理反映离心转速、离心半径、温度梯度和冷却速度等重要因素对微观缩松的影响规律,数值模拟结果与实验结果相吻合.分析增压涡轮的计算结果表明,在涡轮轴向,温度梯度值是影响微观缩松度如何分布的主要原因;在涡轮径向,温度梯度、冷却速度和离心半径的共同作用决定着微观缩松度的变化规律.提高温度梯度,降低冷却速度,充分利用离心压力对枝晶间补缩的有效作用,有利于减少涡轮内部的微观缩松,保证叶片和涡轮的组织致密性和力学性能.","authors":[{"authorName":"梁作俭","id":"668e3ca5-1c3a-4a86-ad13-3441154d3dac","originalAuthorName":"梁作俭"},{"authorName":"许庆彦","id":"17955dac-843d-41f2-88c3-fdca487de134","originalAuthorName":"许庆彦"},{"authorName":"李俊涛","id":"951236b0-b688-44ca-8ac5-f539b9f35d35","originalAuthorName":"李俊涛"},{"authorName":"李世琼","id":"086e7597-ada6-48eb-a758-543a05d47681","originalAuthorName":"李世琼"},{"authorName":"张继","id":"3bd3e630-8181-4b3f-8d44-0db3915f4775","originalAuthorName":"张继"},{"authorName":"柳百成","id":"80913066-48b0-4afb-b333-614adb042828","originalAuthorName":"柳百成"},{"authorName":"仲增墉","id":"9a1c6924-0623-467c-a0a2-65db7752a0e7","originalAuthorName":"仲增墉"}],"doi":"10.3321/j.issn:0412-1961.2003.03.011","fpage":"278","id":"8fbfbd17-e039-4f1f-893a-789a15efd87a","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7a088519-ab01-4cf7-ad12-85b965213b7b","keyword":"Ti-Al合金","originalKeyword":"Ti-Al合金"},{"id":"cfa3bc21-53b8-481d-a611-55f331c10ad7","keyword":"微观缩松","originalKeyword":"微观缩松"},{"id":"0c03561f-ac52-40b2-8750-683cb037b4c4","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"c5752d57-2eab-4a3d-aa11-ff554a19b7c7","keyword":"精密铸件","originalKeyword":"精密铸件"}],"language":"zh","publisherId":"jsxb200303011","title":"Ti-Al合金精密铸件微观缩松预测","volume":"39","year":"2003"},{"abstractinfo":"研究了用简单分离工艺从造纸废液中分离松浆油制备家具底漆及面漆新工艺,对影响其底漆性能的各种因素进行了较为详细的研究,确定了最佳工艺条件.研究结果表明,采用松浆油与桐油进行加成反应,酯化温度为220~240℃时所得底漆外观平整光滑,实干时间240min.新工艺制备的家具底漆及面漆性能良好,废液分离工艺简单,具有良好的经济效益与环保效益.","authors":[{"authorName":"胡波年","id":"051adf09-f004-4941-ac4d-4405cd035f30","originalAuthorName":"胡波年"},{"authorName":"胡汉祥","id":"fca05a09-3299-4d42-8f20-9ae419b70a5c","originalAuthorName":"胡汉祥"},{"authorName":"李爱阳","id":"c6e5f4b5-af8e-4bb6-8e1f-fc605964baba","originalAuthorName":"李爱阳"}],"doi":"10.3969/j.issn.1001-3660.2004.06.020","fpage":"53","id":"1ce17b68-b667-4bdc-ab76-6233c1e744f8","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"3871571e-bd74-4e65-8bd8-af9cd0d69024","keyword":"松浆油","originalKeyword":"松浆油"},{"id":"a28c4078-728b-431d-a4c4-a7c113ed9215","keyword":"桐油","originalKeyword":"桐油"},{"id":"a576ef4f-4fa8-4ed2-b4fd-0769f420646f","keyword":"造纸废液","originalKeyword":"造纸废液"},{"id":"1ff8dfca-3d77-445c-9367-16864db83a2f","keyword":"底漆","originalKeyword":"底漆"}],"language":"zh","publisherId":"bmjs200406020","title":"利用造纸废液中松浆油制底漆","volume":"33","year":"2004"},{"abstractinfo":"采用松装烧结法制备多孔铜,研究了材料密度、孔隙率、拉伸强度与烧结温度的关系。结果表明,在烧结时间均为5 h时,随着铜多孔材料的烧结温度由830℃升高至860、890℃,材料密度逐渐增大、孔隙率逐渐降低,而拉伸强度随之提高;一定尺寸的物质可以顺利通过铜多孔材料,这主要是由于该材料的孔隙具有连通性。","authors":[{"authorName":"赵红梅","id":"47232ae9-6069-404a-b73b-556aba498322","originalAuthorName":"赵红梅"},{"authorName":"付欣","id":"7e9ceeb5-c901-4c24-8468-237e050dc202","originalAuthorName":"付欣"},{"authorName":"贺勇","id":"2eb6b38b-972b-4cad-8872-23c416186f6d","originalAuthorName":"贺勇"},{"authorName":"张全孝","id":"fe1c1028-dff9-41f4-8c1c-74d51446abdf","originalAuthorName":"张全孝"},{"authorName":"贾万明","id":"bc2f9e84-e01f-451d-bb81-dc0fba720ca2","originalAuthorName":"贾万明"},{"authorName":"苏继红","id":"0042e4ad-21f3-4174-ae69-06eb5eed97ab","originalAuthorName":"苏继红"}],"doi":"","fpage":"79","id":"49d51db4-b5f2-40da-8f0e-855ab4f4c075","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"805d5611-d3f1-4bca-b4fb-c019238573d0","keyword":"铜多孔材料","originalKeyword":"铜多孔材料"},{"id":"a90b3ff8-e500-4d28-affe-b9ee4e1469d2","keyword":"松装烧结","originalKeyword":"松装烧结"},{"id":"ebf0ff56-3f78-4cb7-9154-7fdeb8deb11e","keyword":"孔隙率","originalKeyword":"孔隙率"}],"language":"zh","publisherId":"bqclkxygc201306027","title":"松装烧结法制备多孔铜","volume":"","year":"2013"}],"totalpage":33,"totalrecord":324}