{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在超高真空磁控溅射仪上,制备了一系列具有相同调制周期不同层厚比的Cr/CrN涂层.用X射线衍射仪分析了涂层的相组成,通过扫描电镜观察了涂层形貌,采用显微硬度计测试了涂层硬度,在划痕仪上确定涂层和基体间的结合力,并利用磨损仪测量涂层的摩擦磨损性能.结果表明:调制周期为400nm时,当层厚比由2.0减小到0.2,Cr/CrN多层涂层始终由Cr和CrN两相组成,涂层择优取向为CrN(200),且涂层变得愈加致密,硬度从1550HV增大到2300HV,磨损率从2.4×10-8mm3·N-1·m-1减小为0.6×10-8mm3·N-1·m-1,涂层和基体结合性能优良.","authors":[{"authorName":"谈淑咏","id":"ff5e0841-b06f-497f-b8ef-68098a7aa8d8","originalAuthorName":"谈淑咏"},{"authorName":"吴湘君","id":"eee4f7b6-2994-4e23-a159-969cc0a660e1","originalAuthorName":"吴湘君"},{"authorName":"张旭海","id":"e4089a59-1c89-4d6f-bd5f-d27fd8951753","originalAuthorName":"张旭海"},{"authorName":"张炎","id":"e762ffbd-8a1b-482b-a4b2-c2fdfe56d771","originalAuthorName":"张炎"},{"authorName":"蒋建清","id":"f468c909-bc27-4e31-8b90-2f94810cc560","originalAuthorName":"蒋建清"},{"authorName":"朱雪锋","id":"d3f70012-9c3d-4c17-a70c-8ecd1b2e7391","originalAuthorName":"朱雪锋"},{"authorName":"江先彪","id":"633777a0-1850-42d2-b615-21ef5b89b436","originalAuthorName":"江先彪"}],"doi":"10.11868/j.issn.1001-4381.2014.11.005","fpage":"28","id":"cd099ecd-9ab0-44d9-a1c1-f93ce4e109d0","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d2e0dbd3-b9fd-4332-b2d8-03b1c23a1e2a","keyword":"Cr/CrN多层涂层","originalKeyword":"Cr/CrN多层涂层"},{"id":"32e8b1c8-9bab-4118-8bcf-71d6262a96a1","keyword":"层厚比","originalKeyword":"层厚比"},{"id":"88f583e7-92c0-46b5-b616-5b579b4a2a74","keyword":"硬度","originalKeyword":"硬度"},{"id":"7bd2f6df-7e39-4e2b-8e5a-ac091c8c2aa4","keyword":"磨损率","originalKeyword":"磨损率"}],"language":"zh","publisherId":"clgc201411005","title":"层厚比对磁控溅射Cr/CrN多层涂层组织和性能的影响","volume":"","year":"2014"},{"abstractinfo":"为明确层厚比与对钛/钢复合板组织及力学性能的关系,推进TA1/X80层状爆炸复合板在油气运输、航空航天领域的应用,采用爆炸-轧制法,制备7种不同层厚比的TA1/X80层状复合板,通过拉伸、冲击、弯曲、硬度等实验研究层厚比对复合板组织、力学性能的影响,利用OM、SEM、EDS等检测实验分析断口形貌及断裂机制.结果表明:TA1/X80爆炸-轧制复合板界面以周期性波状咬合机制结合,组织均呈流线状,在过渡区Ti、Fe元素发生扩散;TA1、X80层厚比增加,复合板的抗拉强度、屈服强度、塑性、韧性、正弯强度、正弯挠度均呈线性降低趋势,背弯强度和背弯挠度线性增大,且随着向界面靠近,钢侧硬度降低,钛侧硬度升高;由钛侧到钢侧,拉伸断面由沿晶断裂机制过渡为准解理断裂机制,冲击断面由撕裂韧窝断裂机制过渡为等轴韧窝断裂机制.","authors":[{"authorName":"吴伟刚","id":"c3f33cf5-0780-4de3-8529-c0f1f90f5e96","originalAuthorName":"吴伟刚"},{"authorName":"张敏","id":"84cf4c87-37d8-40f0-9732-b9e33acd7d11","originalAuthorName":"张敏"},{"authorName":"丁旭","id":"1bcccf3c-f5a1-4e85-953c-24064c86fc78","originalAuthorName":"丁旭"},{"authorName":"王永锋","id":"aeedf3a8-bc51-4f96-b8e4-ff9812ecd640","originalAuthorName":"王永锋"},{"authorName":"来东","id":"32dcd9f5-8b91-43c4-af96-4985aeba16a6","originalAuthorName":"来东"}],"doi":"","fpage":"61","id":"06fd3829-de25-4778-9284-d987b587c883","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"85a52f4f-78c9-4fd7-ad48-ab123af46d62","keyword":"层厚比","originalKeyword":"层厚比"},{"id":"f08224c8-a104-4471-b529-6f73fa78e905","keyword":"TA1/X80爆炸-轧制复合板","originalKeyword":"TA1/X80爆炸-轧制复合板"},{"id":"fb6aaeca-c588-4406-b7bb-eb96439b956b","keyword":"组织","originalKeyword":"组织"},{"id":"f0592422-bfc2-41e0-abbe-dba392b676b5","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"29c86bcf-a053-4d90-b5fb-2b7cb5cf4355","keyword":"断裂机制","originalKeyword":"断裂机制"}],"language":"zh","publisherId":"bqclkxygc201604015","title":"层厚比对TA1/X80复合板组织和性能的影响","volume":"39","year":"2016"},{"abstractinfo":"采用超音速火焰喷涂+大气等离子喷涂工艺,在K403高温合金表面制备不同层厚比的NiCrAlY/纳米7YSZ热障涂层,研究了涂层厚度变化对热障涂层表面粗糙度、结合强度、热震性能和热循环寿命的影响规律.结果表明:当粘结层厚度一定时,随着陶瓷层厚度的增加,其表面粗糙度增加,涂层结合强度下降;当粘结层厚度为50 μm时,热障涂层的抗热震性能随陶瓷层厚度增加而降低,粘结层厚度提高至100 μm时,热障涂层的抗热震性能随陶瓷层厚度增加先提高,后降低,热障涂层在1100℃的热循环寿命测试结果也基本对应这一规律;当粘结层厚50μm且陶瓷层/粘结层的层厚比在(1~2)∶1的范围内,或者粘结层厚100 μm且陶瓷层/粘结层的层厚比在(2~2.5)∶1范围内时,热障涂层具有较优异的性能.","authors":[{"authorName":"何箐","id":"46742607-2373-4c5a-ad15-0b38a3ee5cb4","originalAuthorName":"何箐"},{"authorName":"李嘉","id":"3fb1bfbf-a12f-4d36-875e-65bf7c9439dc","originalAuthorName":"李嘉"},{"authorName":"詹华","id":"ab3c1017-6f1e-45c4-a92b-8526cca57c89","originalAuthorName":"詹华"},{"authorName":"汪瑞军","id":"209234cb-f57d-4d1f-b01f-dccc7eddff08","originalAuthorName":"汪瑞军"},{"authorName":"王伟平","id":"0da29fd3-07f3-4879-9ec0-acf250acc5a2","originalAuthorName":"王伟平"}],"doi":"","fpage":"17","id":"5aa30792-5df5-42b4-9548-74d098ea414a","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"176cef8a-6a7e-49b0-9fca-d0d0099ce62c","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"c0d71e80-1107-4156-9559-4d1763cfcf68","keyword":"陶瓷层厚度","originalKeyword":"陶瓷层厚度"},{"id":"d90f9c8f-5f3a-49a7-8209-996466207d60","keyword":"层厚比","originalKeyword":"层厚比"},{"id":"01cade34-2764-4479-8aaf-1f5849b6da7b","keyword":"热循环寿命","originalKeyword":"热循环寿命"}],"language":"zh","publisherId":"bmjs201301005","title":"粘结层和陶瓷层厚度对纳米结构热障涂层性能的影响","volume":"42","year":"2013"},{"abstractinfo":"模拟高碳钢线材轧后斯太尔摩冷却过程表面氧化铁皮的生成情况,采用扫描电镜观察铁皮的微观形貌,分析不同的加热温度和冷却工艺对铁皮微观组织及FeO和Fe3 O4层厚比的影响规律.实验结果表明,随着加热温度的升高及延长高温氧化时间,FeO含量增加,层厚比增大.从650℃冷却到350℃以下时,随着冷却速度的降低,Fe3O4含量增加,层厚比减小.因此,实际生产中可通过调整加热温度和冷却速度来获得所需要的氧化铁皮组织结构.","authors":[{"authorName":"胡微","id":"7d9fe1a8-6a94-4748-8d9b-48222c2fb2ab","originalAuthorName":"胡微"},{"authorName":"任勇","id":"c46f2f33-f837-4b1a-b95a-d1800c71c5de","originalAuthorName":"任勇"},{"authorName":"程晓茹","id":"5b39ecc7-4aae-4333-9839-d72b459eeec6","originalAuthorName":"程晓茹"},{"authorName":"王煜","id":"9cdb1026-e509-4719-8a42-c820a1bb00f3","originalAuthorName":"王煜"},{"authorName":"付松岳","id":"358a5a2c-1977-44d1-b835-675a964dffb7","originalAuthorName":"付松岳"}],"doi":"","fpage":"26","id":"2a60382b-080f-4538-9c66-75314106f1db","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"d52ad5ef-0445-406b-b00c-e4f07558a36a","keyword":"高碳钢盘条","originalKeyword":"高碳钢盘条"},{"id":"a93150fe-2fc2-47a2-ad71-e8635c5a3538","keyword":"氧化铁皮","originalKeyword":"氧化铁皮"},{"id":"a6333cfc-1098-44ac-b500-1ffb1f67b51e","keyword":"氧化组织","originalKeyword":"氧化组织"},{"id":"0412f741-67ec-4bba-94b5-030c0f869268","keyword":"层厚比","originalKeyword":"层厚比"}],"language":"zh","publisherId":"shjs201604006","title":"轧后控冷的高碳钢盘条表面氧化铁皮组织的研究","volume":"38","year":"2016"},{"abstractinfo":"借助ANSYS/LS-DYNA软件,建立楔横轧层合轴有限元模型,根据四因素三水平的正交实验进行部分厚径比轧制实验。通过有限元数值模拟,分析工艺参数成形角、展宽角、断面收缩率和轧制温度对厚径比的影响规律。结果表明:轧制实验结果和有限元模拟的结果相符合,有限元模型可以用来预测厚径比。厚径比随着展宽角的增大先迅速下降,后缓慢下降;随着轧制温度的增大先增加,后缓慢增加;随着断面收缩率的增大先缓慢增加,后趋于平缓;随着成形角的增大变化不明显。对厚径比的影响主次为:展宽角、轧制温度、断面收缩率、成形角。研究结果有助于指导层合轴覆材厚度和基材半径尺寸的调控与设计。","authors":[{"authorName":"彭文飞","id":"ee70378a-571e-46c7-be57-5193882efde1","originalAuthorName":"彭文飞"},{"authorName":"朱健","id":"bec9573e-2a96-4559-b47f-d8406843691c","originalAuthorName":"朱健"},{"authorName":"束学道","id":"0e80ecff-17af-4849-933d-ed7f1ccdf2c2","originalAuthorName":"束学道"}],"doi":"10.13801/j.cnki.fhclxb.20160331.002","fpage":"160","id":"1d237c83-7acd-4d09-9158-58c65042f955","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"bc3d4bff-cc45-430c-aa87-dec4afd943d3","keyword":"层合轴","originalKeyword":"层合轴"},{"id":"fef7d039-046e-41ba-a3a7-f7601ceb6cd1","keyword":"厚径比","originalKeyword":"厚径比"},{"id":"75a8c8fb-29c4-4985-bcb6-de62d09b7a7f","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"77e35056-4155-4344-8d85-0d109bcf62e0","keyword":"楔横轧","originalKeyword":"楔横轧"},{"id":"fc7396ce-0ac0-49e7-b7ee-aa2700aa3ab9","keyword":"影响分析","originalKeyword":"影响分析"}],"language":"zh","publisherId":"fhclxb201701021","title":"工艺参数对楔横轧42CrMo/Q235复合材料层合轴厚径比的影响","volume":"34","year":"2017"},{"abstractinfo":"本文通过构造片状钽粉模型,建立了片状型粉末的数学模型和测试模型,并确定了片状钽粉长度、厚度及径厚比测试方法.测量前,片状钽粉先经分散处理,然后金相镶嵌并切片磨削.利用光学显微镜从水平截面测量长度的平均值,从垂直截面测量厚度的平均值,计算得出片状钽粉的径厚比,并对所得测试数据进行数理统计并进行修正,得出片状钽粉的最终径厚比.研究表明:该测试方法可以方便测试片状钽粉的平均长度、厚度及径厚比.当测量颗粒数达到200个以上时,测试数据趋于稳定,具有良好的重现性和较小的误差.","authors":[{"authorName":"周华堂","id":"596ef9f8-9306-40b6-9d8a-72944cec9b79","originalAuthorName":"周华堂"},{"authorName":"罗海辉","id":"4668fd4e-a557-4f4b-a92a-dc64ef73d6e1","originalAuthorName":"罗海辉"},{"authorName":"彭宇","id":"e269f0dc-7f30-43b7-87ca-35ca044eca42","originalAuthorName":"彭宇"},{"authorName":"谢晨辉","id":"89937a7f-5029-418f-9360-b8924dee6b62","originalAuthorName":"谢晨辉"},{"authorName":"彭鑫","id":"add58030-3158-4ea7-86ad-3e668aad52c8","originalAuthorName":"彭鑫"}],"doi":"10.3969/j.issn.1003-7292.2015.04.009","fpage":"272","id":"03adeee8-bc44-4281-a828-451b8dee37d6","issue":"4","journal":{"abbrevTitle":"YZHJ","coverImgSrc":"journal/img/cover/YZHJ.jpg","id":"75","issnPpub":"1003-7292","publisherId":"YZHJ","title":"硬质合金"},"keywords":[{"id":"309b3a8e-892b-4d92-8fe7-3272541c1e6f","keyword":"片状钽粉","originalKeyword":"片状钽粉"},{"id":"95d522af-d61c-4a30-b6e2-46583ae61354","keyword":"测量模型","originalKeyword":"测量模型"},{"id":"64d47302-4a00-48f7-99ba-0b41b170a9bb","keyword":"数理修正","originalKeyword":"数理修正"},{"id":"3be7d293-0964-4b4c-855b-36288b2169cd","keyword":"径厚比","originalKeyword":"径厚比"}],"language":"zh","publisherId":"yzhj201504009","title":"片状钽粉径厚比测试方法研究","volume":"32","year":"2015"},{"abstractinfo":"用水合肼( N2H4·H2O)化学还原制备超细银粉,将超细银粉用不同的球磨方法制备成片状银粉.通过片状银粉的性能对比发现,采用湿法球磨可以制备出厚度<100nm、径厚比>50∶1的片状银粉,在浆料应用中银粉有较好的导电性能.","authors":[{"authorName":"黄富春","id":"f6fb150a-c3fa-4d3b-ac7f-7afb5af920bd","originalAuthorName":"黄富春"},{"authorName":"李文琳","id":"193d9ac1-1fd7-4577-91ee-e034f9e7ea58","originalAuthorName":"李文琳"},{"authorName":"熊庆丰","id":"11f719d4-69c4-49c2-a2a9-4d8af1869e57","originalAuthorName":"熊庆丰"},{"authorName":"李晓龙","id":"656bd815-a15f-4de4-a36b-77b2d76ad032","originalAuthorName":"李晓龙"},{"authorName":"晏廷懂","id":"1cd35301-5e00-422c-a62c-21030bec6a94","originalAuthorName":"晏廷懂"},{"authorName":"余伟","id":"1352cbc2-4d3d-45a5-b3b1-f77bd8274551","originalAuthorName":"余伟"},{"authorName":"张红斌","id":"5fa5045c-60a7-4474-8534-0e44a0401bbb","originalAuthorName":"张红斌"},{"authorName":"刘继松","id":"c5a66598-41e5-4cbd-b2c3-f01639d24b46","originalAuthorName":"刘继松"}],"doi":"10.3969/j.issn.1004-0676.2012.02.006","fpage":"30","id":"91dec365-275e-4dc3-aa00-53402fe98756","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"40c0f052-9199-4088-9a28-f59ed4cfa401","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"ddebe46b-872d-40ed-842b-1f24f6ac02a1","keyword":"电子材料","originalKeyword":"电子材料"},{"id":"871cd914-04c6-4be6-be73-f6aa9c8d111e","keyword":"片状银粉","originalKeyword":"片状银粉"},{"id":"d9e0bd94-3121-456b-8c48-0c66c2fa3c97","keyword":"化学还原法","originalKeyword":"化学还原法"},{"id":"4fe440fc-3963-4fcd-b41d-3726b983b3ad","keyword":"径厚比","originalKeyword":"径厚比"},{"id":"0f24686a-f9bc-4de0-b9ef-95a314191876","keyword":"浆料","originalKeyword":"浆料"}],"language":"zh","publisherId":"gjs201202006","title":"高径厚比片状银粉的制备","volume":"33","year":"2012"},{"abstractinfo":"高速电镀是将钢质圆筒在较短的时间内镀取较厚的铜层.按设计要求在厚铜层上用照相制版工艺制得理想的图案,镀铬后供印染厂使用.用毕的圆筒经化学退镀又可重新使用.该工艺可取代铜制圆筒,从而节省大量铜材,降低成本.","authors":[{"authorName":"程沪生","id":"cc100b4c-38b0-4f47-9f31-a404b816396e","originalAuthorName":"程沪生"}],"doi":"10.3969/j.issn.1001-3849.2005.01.009","fpage":"27","id":"cb80823b-3149-416b-ae43-65bca8b864c4","issue":"1","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"48f3ae04-6252-461c-851c-8f6627039386","keyword":"镀厚铜","originalKeyword":"镀厚铜"},{"id":"f97ba30e-7d58-422d-9d2f-e8e24d5e9e4f","keyword":"高速电镀","originalKeyword":"高速电镀"},{"id":"781e22ed-9dec-46f2-88e5-ced288d5711e","keyword":"钢质圆筒","originalKeyword":"钢质圆筒"}],"language":"zh","publisherId":"ddjs200501009","title":"圆筒高速电镀厚铜层","volume":"27","year":"2005"},{"abstractinfo":"高岭石的径厚比,在高岭土的许多应用领域都是一个重要参数,目前尚未有很好的仪器和技术对其进行精确测量。以电阻法为原理对颗粒粒度的测量,反映了电阻的变化与颗粒体积和形貌之间的关系,可以此为基础进行高岭石径厚比计算。通过对以电阻法为工作原理的库尔特仪测试输出数据和图形的详细分析,发现其输出的电脉冲高度反映颗粒的体积,电脉冲宽度反映通过小孔的颗粒长度,并通过与标准球形颗粒脉冲数据进行对比,建立了高岭石径厚比测算公式n+ W-Wn AR=32( Wn+1-Wn )3 L通过实例分析,验证了该方法的精确性。","authors":[{"authorName":"刘钦甫","id":"9ab5e185-fde3-4aa7-a084-754308264a84","originalAuthorName":"刘钦甫"},{"authorName":"张志亮","id":"d5cbb031-665f-43cc-a56d-1da13a14ec0a","originalAuthorName":"张志亮"},{"authorName":"程宏飞","id":"8ba72634-668f-4cb0-a753-6f2353caa98e","originalAuthorName":"程宏飞"},{"authorName":"江发伟","id":"64a784aa-99dd-4f5f-965d-bbad4bf41020","originalAuthorName":"江发伟"}],"doi":"10.3969/j.issn.1001-9731.2014.18.014","fpage":"18067","id":"a3c2d7c2-3c8d-41ed-9c86-212a519becc9","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9bcceeef-a47d-4d16-a6ff-1df0aaefa876","keyword":"高岭石","originalKeyword":"高岭石"},{"id":"8d5819ff-eebc-4202-bd32-2cc5e77adda8","keyword":"径厚比","originalKeyword":"径厚比"},{"id":"9a03f235-dd38-41c5-b1c8-549b1dcbc42a","keyword":"电阻法","originalKeyword":"电阻法"},{"id":"0bf0f052-45f1-46db-b4ed-50599beaf043","keyword":"库尔特计数仪","originalKeyword":"库尔特计数仪"},{"id":"7e56d25b-5de8-479a-b0a9-dce18eddf0dd","keyword":"粒径分析","originalKeyword":"粒径分析"},{"id":"3f01b8e8-a3c5-42c2-a483-90fb4e602fbe","keyword":"脉冲信号","originalKeyword":"脉冲信号"}],"language":"zh","publisherId":"gncl201418014","title":"利用电阻法原理测算高岭石的径厚比?","volume":"","year":"2014"},{"abstractinfo":"选择国内多个氧化铁矿山中2个有一定代表性的云母氧化铁矿石类型,采用先进的生产工艺制得高径厚比的云母氧化铁,其理化性能测试指标高于国内外标准.应用实验结果表明,其防腐性能优于国内现用的云母氧化铁.选择合理的制备工艺,可以用云母氧化铁矿石生产出满足涂料生产需要的优质云母氧化铁.","authors":[{"authorName":"陈述文","id":"33376d00-3c7e-4fd9-85ef-10a85797f7f5","originalAuthorName":"陈述文"},{"authorName":"陈启平","id":"0bcea69b-ebee-434e-9dea-232c8cc01c13","originalAuthorName":"陈启平"},{"authorName":"仝克闻","id":"e16f1e80-b5d9-409e-b224-121bf9d847d3","originalAuthorName":"仝克闻"},{"authorName":"彭振邦","id":"10b0b266-3d4e-4af3-afdf-11459c71e50c","originalAuthorName":"彭振邦"}],"doi":"10.3969/j.issn.0253-4312.2003.07.002","fpage":"4","id":"cc729107-acd5-4f6a-8ccc-fdebbe90bd43","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"f8424a6c-9731-4aa7-9e14-e01b883feced","keyword":"云母氧化铁","originalKeyword":"云母氧化铁"},{"id":"3c286931-737a-4a21-9ba4-aa0e4a2741b2","keyword":"涂料","originalKeyword":"涂料"},{"id":"0dea792c-24c9-4901-9c9c-894224f224ce","keyword":"径厚比","originalKeyword":"径厚比"},{"id":"6aa3535e-f098-4084-a9a5-7b77db54d22e","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"tlgy200307002","title":"高径厚比云母氧化铁的研制及其应用研究","volume":"33","year":"2003"}],"totalpage":4240,"totalrecord":42392}