{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在较低温度下采用硫酸低温熟化—水浸工艺处理褐铁型红土镍矿,对熟化—水浸渣进行矿物学表征,并对熟化过程动力学进行了研究.结果表明,红土镍矿经过熟化—水浸处理,矿物的矿相发生转变:铁由针铁矿相转变为赤铁矿等铁的氧化物,大部分镍钴矿物转变为硫酸镍和硫酸钴,小部分转变为难溶的铁酸镍和铁酸钴造成镍和钴的损失.硫酸熟化过程动力学研究表明,镍钴硫酸化动力学过程符合典型的多相液固区域反应动力学模型,镍钴硫酸熟化反应表观活化能分别为12.4 k J/mol和3.2 kJ/mol,这一过程受内扩散控制.","authors":[{"authorName":"裴彦林","id":"b6c5d2e1-d4cc-471f-8486-3d3f7419b979","originalAuthorName":"裴彦林"},{"authorName":"马保中","id":"181d4a11-f91f-44ee-bcdc-b3ed20af13e9","originalAuthorName":"马保中"},{"authorName":"金炳界","id":"188fb93d-5b8e-435c-8512-c28ece8f558b","originalAuthorName":"金炳界"},{"authorName":"杨玮娇","id":"aeaeb95b-44ce-45ce-a056-5e2a95af44d0","originalAuthorName":"杨玮娇"},{"authorName":"魏永刚","id":"49d9eaf5-10d3-430c-b535-cb5b0b70c96a","originalAuthorName":"魏永刚"}],"doi":"10.3969/j.issn.2095-1744.2016.05.007","fpage":"28","id":"8cbda12f-f9d2-4f35-acc8-0e5c56923f4a","issue":"5","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"35f05e85-4cc2-4837-8705-cd3c4c086202","keyword":"褐铁型红土镍矿","originalKeyword":"褐铁型红土镍矿"},{"id":"7afcf8bc-9b0a-49ee-ab0e-a15ccaf54d8d","keyword":"低温熟化","originalKeyword":"低温熟化"},{"id":"15d24373-fcc9-4b15-99c8-ed4a1bff4b10","keyword":"动力学","originalKeyword":"动力学"},{"id":"f5aa709c-c34f-47ac-a966-7aa6b25baa33","keyword":"矿相转变","originalKeyword":"矿相转变"}],"language":"zh","publisherId":"ysjs201605007","title":"褐铁型红土镍矿低温熟化—常压水浸镍钴过程研究","volume":"6","year":"2016"},{"abstractinfo":"在较大Na2SO4用量范围内,研究Na2SO4对高铁低镍型红土镍矿选择性还原焙烧的作用机理.结果表明:Na2SO4的作用随其用量变化有本质的区别;随其用量增加,磁选镍铁产品中镍的品位和回收率以及镍铁回收率差均先提高后降低,而铁产率和回收率则是先降低后升高;当Na2SO4用量为5%时,选择性还原效果最佳;Na2SO4会损耗煤中的固定碳,减弱还原气氛,使试样中的铁矿物还原为不具磁性的FeO;而当Na2SO4过量时,会导致部分铁矿物还原为含镁磁铁矿,造成铁回收率呈现先降低后提高的变化规律,同时过量的Na2SO4还会生成多余的Na2S,与焙烧体系中的NiO和FeO发生反应生成NiS和FeS,二者混熔生成(Ni,Fe)S,导致镍的品位和回收率都降低.","authors":[{"authorName":"王晓平","id":"472691d6-8577-4bd8-9fb6-acb0eff746d1","originalAuthorName":"王晓平"},{"authorName":"孙体昌","id":"92e90587-9f1e-403f-ae0f-da791e675c13","originalAuthorName":"孙体昌"},{"authorName":"刘志国","id":"8d1fef9a-131a-4bae-8462-5bb913d53ff8","originalAuthorName":"刘志国"},{"authorName":"徐承焱","id":"b5691a96-3bb0-4989-9caf-3887b327fac5","originalAuthorName":"徐承焱"},{"authorName":"李川","id":"2d303ede-72af-41aa-95e5-05f70264acd6","originalAuthorName":"李川"}],"doi":"","fpage":"2197","id":"f04471ab-9f4d-41ad-93e2-5e528e6bd8ca","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"905e610d-b132-4ddd-9d1e-38675ade51d4","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"0561f72a-c375-4c6d-a845-32c3e55d946b","keyword":"选择性还原焙烧","originalKeyword":"选择性还原焙烧"},{"id":"3721c25e-14a7-4757-8da5-7980058275eb","keyword":"镍铁","originalKeyword":"镍铁"},{"id":"f2023599-3bdd-478f-b0f5-870c1657fc24","keyword":"Na2SO4","originalKeyword":"Na2SO4"}],"language":"zh","publisherId":"zgysjsxb201610020","title":"Na2SO4在高铁低镍型红土镍矿选择性还原焙烧中的作用机理","volume":"26","year":"2016"},{"abstractinfo":"利用碳还原-磁选工艺回收低品位红土镍矿中的铁和镍.在对矿物成分、物相分析的基础之上,考察还原反应温度、配碳比(C/O)、助熔剂的添加量(CaO%)和还原时间等因素对Fe、Ni回收的影响,结果表明,还原反应温度1 375℃、配碳比(C/O)0.8、助熔剂的添加量(CaO%) 12%、还原时间300 min的条件下,低品位红土镍矿中镍和铁的回收率分别为99.47%和97.54%,同时尾矿中Ni、Cr含量低于0.04%.","authors":[{"authorName":"孙映","id":"8bdb9dd2-4f18-469c-aff7-8a79eb84d73e","originalAuthorName":"孙映"},{"authorName":"封亚晖","id":"728cb1e5-823f-4f24-98ef-d0b173b4ca5e","originalAuthorName":"封亚晖"},{"authorName":"陈法涛","id":"015d0ce7-2bb3-4d18-adf2-e749a15c2489","originalAuthorName":"陈法涛"},{"authorName":"李秋菊","id":"b03619d9-dc9c-485e-a2df-796e152ac554","originalAuthorName":"李秋菊"},{"authorName":"洪新","id":"cfeb3bfa-9236-46e1-aa62-6f85f506f5f7","originalAuthorName":"洪新"}],"doi":"","fpage":"63","id":"b4e25e4d-f0b4-48f8-824c-1d3cbf41a8d3","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"e5e638a3-029e-41e8-9768-6225f4f09ada","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"4d55ebdf-6521-4c28-98c8-71dbb63b934b","keyword":"还原","originalKeyword":"还原"},{"id":"80f49a73-1334-42c6-af2f-02b28e4fee4d","keyword":"磁选","originalKeyword":"磁选"},{"id":"a1e8855f-b170-4804-b936-fe59d066e851","keyword":"铁镍合金","originalKeyword":"铁镍合金"}],"language":"zh","publisherId":"shjs201506013","title":"低品位红土镍矿还原-磁选镍铁的实验研究","volume":"37","year":"2015"},{"abstractinfo":"以国外某地区含水量29.62%的腐殖土型红土镍矿为原料,通过化学分析及X射线衍射分析,确定其化学成分和矿物组成.根据红土镍矿的DTA-TG曲线,制定红土镍矿还原焙烧试验温度.并在实验室条件下进行正交试验,考察还原温度、煤粉配比和还原时间对红土镍矿还原焙烧的影响.综合考虑了铁金属化率及能耗生产成本的影响,确定了最佳还原焙烧条件,即在1 000℃下,配碳系数为1.8,还原焙烧50 min时,铁金属化率可达到50%以上,可为电炉还原熔炼提供高品质的焙砂.","authors":[{"authorName":"李涛","id":"4d389e67-6200-4576-adf1-3eb4583b92e4","originalAuthorName":"李涛"},{"authorName":"贾彦忠","id":"bc068106-3999-4ac8-83ff-a88967f20f09","originalAuthorName":"贾彦忠"},{"authorName":"梁德兰","id":"4ec0ab7b-92c4-4c7e-b26a-0f94bccd99a7","originalAuthorName":"梁德兰"},{"authorName":"史进朋","id":"62bd73b9-2d5f-4aa6-8b94-1cd749e2eb76","originalAuthorName":"史进朋"},{"authorName":"闫方兴","id":"fc00bd66-d9cd-46bc-bb2f-a076f6b5284c","originalAuthorName":"闫方兴"}],"doi":"","fpage":"10","id":"e84e6d25-3e9f-414f-a7e6-84612b17bc06","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"30155a36-717a-4f89-accc-c1858302b32c","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"17bf803b-836a-42db-9bb0-2a9b39563f01","keyword":"还原焙烧","originalKeyword":"还原焙烧"},{"id":"1bf201ca-d678-4f46-815c-8c507368b278","keyword":"金属化率","originalKeyword":"金属化率"},{"id":"4046693b-5899-41a3-b65e-c10e30374cf6","keyword":"失重率","originalKeyword":"失重率"}],"language":"zh","publisherId":"gtyj201301003","title":"红土镍矿还原焙烧的试验研究","volume":"41","year":"2013"},{"abstractinfo":"为了研究腐泥土型红土镍矿在焙烧过程中物相转变及固结机制问题,通过微型烧结试验和三角锥法软熔特性试验,对原矿和焙烧后的团块进行了化学成分、X射线衍射(XRD)和软熔特性分析,并通过添加熔剂CaO改变团块碱度,结合冶金相图进行了分析。研究结果表明,自然碱度的红土镍矿经高温焙烧后主要由尖晶石(MgFe2O4)、镁橄榄石((Mg,Fe)2SiO4)和顽火辉石(MgSiO3)构成。随着碱度从0.5上升到2.0,顽火辉石相继转变为低熔点的透辉石(CaMgSi2O6)和高熔点的镁黄长石(Ca2MgSi2O7)以及镁蔷薇辉石(Ca3MgSi2O8)。红土镍矿的软熔温度也随碱度的提高先降低后升高,在碱度为1.0时达到最低点。结合冶金相图分析得知,通过改变碱度可以显著增加红土镍矿烧结过程液相量,红土镍矿烧结理想的黏结相为透辉石。","authors":[{"authorName":"智谦","id":"b53e7cd6-4108-4adf-b129-58260bca6bc7","originalAuthorName":"智谦"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150466","fpage":"9","id":"17e362b8-3dfd-4c54-af96-67a9bf93efad","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"42853758-bd7c-4636-ac2e-d5f2227b175c","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"4f3cf6c1-4634-4735-9f0d-e82a91a53f0a","keyword":"碱度","originalKeyword":"碱度"},{"id":"fa1405d1-9c4e-46be-949a-555811dca0a9","keyword":"软熔温度","originalKeyword":"软熔温度"},{"id":"baeba2d7-3c57-4719-b736-ca0e59eac993","keyword":"黏结相","originalKeyword":"黏结相"},{"id":"a1ba8976-945f-4db4-a849-f51eced9c0a4","keyword":"透辉石","originalKeyword":"透辉石"}],"language":"zh","publisherId":"gt201607002","title":"碱度对腐泥土型红土镍矿烧结行为的影响","volume":"51","year":"2016"},{"abstractinfo":"火法冶炼红土镍矿工艺为当前从红土镍矿中提镍的主要流程。分析了主要的火法冶炼红土镍矿工艺的技术特点。火法冶炼红土镍矿工艺具有工艺成熟、流程短、效率高等优点,但同时也存在能耗较高、熔炼过程渣量过多、有粉尘污染等不足。中国自主开发了高炉冶炼红土矿生产镍铁合金新技术,并在实践中进一步得到发展,高炉冶炼红土矿生产镍铁合金工艺还应从大型化、节能、环保、长寿等领域进一步发展。当前对火法冶炼红土镍矿工艺的研究势在必行,需要在完善还原熔炼工艺方面进行深入的研究,通过研究新方法、新工艺解决火法冶炼工艺中能耗高、各种有价值金属综合回收的难题,实现红土镍矿火法冶炼工艺的低能耗、低排放和镍工业的可持续发展。","authors":[{"authorName":"庞建明,郭培民,赵沛","id":"0a27be60-c099-454b-9d41-86da2629e9ec","originalAuthorName":"庞建明,郭培民,赵沛"}],"categoryName":"|","doi":"","fpage":"1","id":"21bd97e8-38da-4297-89ba-ba4008566bbd","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"0c9b4363-e319-436f-b3b4-eac95edfffaf","keyword":"红土镍矿 ","originalKeyword":"红土镍矿 "},{"id":"223db79d-99c3-4f0c-93ad-5aa6efd81bf7","keyword":" nickel ","originalKeyword":" nickel "},{"id":"a87ed5c6-f3e0-4ac8-8ba4-f8f3649a99b6","keyword":" pyrometallurgical technology ","originalKeyword":" pyrometallurgical technology "},{"id":"6c24a521-b39c-44d1-95cd-812b8d0f1886","keyword":" ferronickel","originalKeyword":" ferronickel"}],"language":"zh","publisherId":"1001-0963_2011_6_6","title":"火法冶炼红土镍矿技术分析","volume":"23","year":"2011"},{"abstractinfo":"火法冶炼红土镍矿工艺为当前从红土镍矿中提镍的主要流程.分析了主要的火法冶炼红土镍矿工艺的技术特点.火法冶炼红土镍矿工艺具有工艺成熟、流程短、效率高等优点,但同时也存在能耗较高、熔炼过程渣量过多、有粉尘污染等不足.中国自主开发了高炉冶炼红土矿生产镍铁合金新技术,并在实践中进一步得到发展,高炉冶炼红土矿生产镍铁合金工艺还应从大型化、节能、环保、长寿等领域进一步发展.当前对火法冶炼红土镍矿工艺的研究势在必行,需要在完善还原熔炼工艺方面进行深入的研究,通过研究新方法、新工艺解决火法冶炼工艺中能耗高、各种有价值金属综合回收的难题,实现红土镍矿火法冶炼工艺的低能耗、低排放和镍工业的可持续发展.","authors":[{"authorName":"庞建明","id":"ff613a0e-f5de-4faf-adb1-af3ac84ad156","originalAuthorName":"庞建明"},{"authorName":"郭培民","id":"e01abac8-e419-4779-aefb-b9e851a68366","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"ba3f9714-13ec-4d06-bf54-5045a233aaee","originalAuthorName":"赵沛"}],"doi":"","fpage":"1","id":"91ea1c4f-a590-4681-a188-12e9f012e29a","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"67174e40-9fb6-427a-a3b0-57a6a96cc27b","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"2b4a723b-da0d-4484-bca0-6e94433d6d85","keyword":"镍","originalKeyword":"镍"},{"id":"cf2b8cfb-5d22-4eb3-bef4-6ccf020a5b30","keyword":"火法工艺","originalKeyword":"火法工艺"},{"id":"99bf92b5-56bd-4dea-8b23-8bfa33526431","keyword":"镍铁","originalKeyword":"镍铁"}],"language":"zh","publisherId":"gtyjxb201106001","title":"火法冶炼红土镍矿技术分析","volume":"23","year":"2011"},{"abstractinfo":"以红土镍矿硫酸焙烧熟料溶出液为原料,(NH4)2CO3为碱式调节剂,采用湿法制备黄铵铁矾.研究和分析了反应温度、反应时间和pH值对溶出液中黄铵铁矾生成率的影响,并利用X射线衍射(XRD)、扫描电子电微镜(SEM)和化学成分分析等手段对制备产物进行了表征.研究发现,在反应温度95 ℃、反应时间4 h、终点pH值是2.5的条件下,黄铵铁矾生成率大于98%,实现了铁的有效分离,得到花球状黄铵铁矾粉体.","authors":[{"authorName":"朱来东","id":"7f32a6d7-de17-42d5-8c38-af40be1c64fa","originalAuthorName":"朱来东"},{"authorName":"田勇","id":"158ffa29-bc53-45ad-ac25-560db265dfaf","originalAuthorName":"田勇"},{"authorName":"李辉","id":"31e4cc89-4ad5-40d9-8e55-b950550e3774","originalAuthorName":"李辉"},{"authorName":"黄红波","id":"dd3b9e4c-53f5-41c5-bfe0-251aa11bc9ee","originalAuthorName":"黄红波"},{"authorName":"罗绍华","id":"ca6ffba0-3c9d-4033-b1c0-c3cfad35db6e","originalAuthorName":"罗绍华"}],"doi":"10.3969/j.issn.2095-1744.2017.01.008","fpage":"36","id":"de3b82a1-2ec1-4880-8456-aaff6376fddb","issue":"1","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"35524612-bad0-47b0-afce-4b511da627a3","keyword":"黄铵铁矾晶体","originalKeyword":"黄铵铁矾晶体"},{"id":"0a20f3d2-be61-48ad-a691-c6a4bb145662","keyword":"花球状","originalKeyword":"花球状"},{"id":"0d808f2a-e0f8-4b40-aaaf-4c9d256c7649","keyword":"有价金属分离","originalKeyword":"有价金属分离"},{"id":"c7137e6f-1984-49b7-934e-dfafd591d00c","keyword":"红土镍矿","originalKeyword":"红土镍矿"}],"language":"zh","publisherId":"ysjs201701008","title":"红土镍矿选择性溶出制备黄铵铁矾花球状晶体","volume":"7","year":"2017"},{"abstractinfo":"随着硫化镍矿资源的日益枯竭,红土镍矿的开发利用热潮已经来临.研究了硫酸化焙烧-水浸工艺处理红土镍矿过程中各相关因素的影响,研究表明:某红土镍矿在实验条件为:焙烧温度250℃,焙烧时间2.5 h,水浸温度60℃,水浸时间1 h,水浸固液比1:8时,酸料比(ml·g-1)0.5:1,镍的浸出率可以到达76.27%,钴的浸出率达到55.88%.实验效果良好.二次重复浸出实际上抑制了矿物中镍、铁的浸出,而促进了钴的浸出.最后,文章分析了硅酸盐与酸反应的相关特性.","authors":[{"authorName":"邱沙","id":"497f5900-0e90-4c11-8ab4-afe6b249b83d","originalAuthorName":"邱沙"},{"authorName":"车小奎","id":"4e925ab1-2869-4bed-9b58-28ca875ee896","originalAuthorName":"车小奎"},{"authorName":"郑其","id":"268f2376-5896-4955-ba58-b3d7a93c5fef","originalAuthorName":"郑其"},{"authorName":"段锦","id":"d7b16836-8c58-486f-9b9e-ad2744e557da","originalAuthorName":"段锦"}],"doi":"10.3969/j.issn.0258-7076.2010.03.017","fpage":"406","id":"a9a3c297-14a0-4826-8715-912797481b30","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"ec97d3d5-91ed-4811-b19a-4be7bac19b48","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"7cef2bf1-85d3-462b-a4e0-f396a78c5528","keyword":"硫酸化焙烧","originalKeyword":"硫酸化焙烧"},{"id":"79ef6865-0088-4514-97c9-4106958274bd","keyword":"水浸","originalKeyword":"水浸"},{"id":"2e2ab5e7-9b4f-41a1-90a2-67373c349119","keyword":"硅酸盐","originalKeyword":"硅酸盐"}],"language":"zh","publisherId":"xyjs201003017","title":"红土镍矿硫酸化焙烧-水浸实验研究","volume":"34","year":"2010"},{"abstractinfo":"针对红土镍矿在焙烧过程中物相转变及固结机制问题,对原矿进行了化学成分、X射线衍射(XRD)分析,得知红土镍矿主要以Fe2O3和单斜形蛇纹石矿物为主,另外含有部分十字沸石和利蛇纹石;通过热重(TG)、差热(DTA)测试,得到了在焙烧过程中,自然水、结晶水及羟基分别在195,293和612℃被脱除,在830℃时,部分硅酸盐发生物相转变;并用Factsage软件对红土矿在加热过程中液相的产生量进行了理论计算,当焙烧温度为1220℃时红土矿球团开始产生液相.在实验室中,利用箱式电阻炉进行球团焙烧实验,结果表明,焙烧球团的抗压强度和落下强度随着焙烧温度和时间的增加而增大,焙烧温度低于1200℃时,球团依靠固相反应和再结晶固结,抗压强度及落下强度较低;焙烧温度达到1300℃时,红土矿会产生34%的液相,冷却后使球团固结,抗压强度和落下强度大大增加;当焙烧温度一定时,球团抗压强度和落下强度随焙烧时间的延长而增加,但是球团的强度增加幅度较小.","authors":[{"authorName":"潘成","id":"20cb75df-f7f1-438d-a720-4cd882bc372f","originalAuthorName":"潘成"},{"authorName":"白晨光","id":"2f610bba-52a6-4291-ac62-c1ccb5ebe59a","originalAuthorName":"白晨光"},{"authorName":"吕学伟","id":"2da4f807-2544-4ff7-b4b0-d1cce28f0004","originalAuthorName":"吕学伟"},{"authorName":"胡途","id":"8f55e4b6-dd84-45f1-a05c-ec23b851c28a","originalAuthorName":"胡途"},{"authorName":"黄小波","id":"c132b415-d6f6-4872-8f98-b24e3800c4cb","originalAuthorName":"黄小波"}],"doi":"10.3969/j.issn.0258-7076.2011.06.022","fpage":"916","id":"3ab87321-23f2-4e40-9f3a-5341deff299d","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"8fad2842-a261-4072-a33c-b9c0dd2bd0c4","keyword":"红土镍矿","originalKeyword":"红土镍矿"},{"id":"1c1e34da-236e-4085-bb26-3ca8a9693503","keyword":"球团焙烧","originalKeyword":"球团焙烧"},{"id":"d6da5b55-e5f0-468b-a375-fc2c88ea4414","keyword":"固结机制","originalKeyword":"固结机制"},{"id":"c79f4072-0020-43db-bdc0-d94a56b0231b","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"31486b01-c71c-4f92-a5b8-28c4e84b7cf9","keyword":"落下强度","originalKeyword":"落下强度"}],"language":"zh","publisherId":"xyjs201106022","title":"硅镁型红土镍矿球团焙烧固结机制研究","volume":"35","year":"2011"}],"totalpage":3813,"totalrecord":38128}