{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于进口温度为90℃的热水型低温热源,以HFC245fa为工质,以单位热水质量流量对应的发电功率(比电功)最大化为目标函数,开展了以小型辐流式汽轮机为膨胀部件的低温发电有机朗肯循环实验系统性能优化研究.结果表明:在热源进口温度为90℃、冷凝温度为30℃的工况下,采用渐缩喷管时,蒸发压力为0.596 MPa(蒸发温度为69.16℃)时比电功达到最大值1.28 kJ/kg;采用缩放喷管时,蒸发压力为0.698 MPa(蒸发温度为75.16℃)时比电功达到最大值0.87 kJ/kg.","authors":[{"authorName":"潘利生","id":"56aba041-a323-429b-8c80-12956e056695","originalAuthorName":"潘利生"},{"authorName":"王怀信","id":"3c0dc63a-f2b2-44c7-9d01-e6a2dda9a53b","originalAuthorName":"王怀信"},{"authorName":"郭东奇","id":"4af32420-3393-413d-a525-d83edc722e76","originalAuthorName":"郭东奇"}],"doi":"","fpage":"1803","id":"41bafc72-3a0e-44b0-9750-8c344f44d76a","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0936d604-5820-401b-b69d-4cbac706fcd7","keyword":"有机朗肯循环","originalKeyword":"有机朗肯循环"},{"id":"4a7d6303-4c94-41b1-ad0d-fe5011dad5e7","keyword":"辐流式汽轮机","originalKeyword":"辐流式汽轮机"},{"id":"de242424-a387-4572-99be-1633d7e751f6","keyword":"喷管","originalKeyword":"喷管"},{"id":"a68e3e6e-cc67-48ef-9253-bc89bd02abee","keyword":"蒸发压力","originalKeyword":"蒸发压力"},{"id":"f7bf11ac-7c98-4c4f-9691-88610f38bd49","keyword":"实验优化","originalKeyword":"实验优化"}],"language":"zh","publisherId":"gcrwlxb201310003","title":"低温发电有机朗肯循环系统性能实验研究","volume":"34","year":"2013"},{"abstractinfo":"结合酒钢高炉的现有原料条件,对高炉合理的炉料搭配方式进行了实验研究.通过对不同组合实验结果的对比分析和优化实践,探讨了酒钢高炉目前较合理的炉料结构形式.","authors":[{"authorName":"杨双平","id":"5d1f884b-a67a-4118-8755-bc5b881ca9e7","originalAuthorName":"杨双平"},{"authorName":"冯燕波","id":"b6c8face-6901-4e48-b509-ccf4325420a8","originalAuthorName":"冯燕波"},{"authorName":"石自新","id":"a44d2592-5666-4b63-ac4f-7fc5a30a5ee3","originalAuthorName":"石自新"}],"doi":"10.3969/j.issn.1001-1447.2007.02.012","fpage":"40","id":"77832c3f-2c3d-4b6c-80eb-7b311717711b","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"2c0999a5-4609-4ca4-abdd-49431ac00413","keyword":"高炉","originalKeyword":"高炉"},{"id":"c7384a9a-00a6-4686-a12a-da8c7dff3c21","keyword":"烧结性能","originalKeyword":"烧结性能"},{"id":"adaaebf7-6838-4ff2-b95f-fcf9175578ab","keyword":"炉料结构","originalKeyword":"炉料结构"}],"language":"zh","publisherId":"gtyj200702012","title":"酒钢高炉炉料结构优化实验研究","volume":"35","year":"2007"},{"abstractinfo":"研究了乙丙橡胶电缆电绝缘料的无卤阻燃配方,用自行研制的专业化软件FR-FI进行均匀实验设计和优化,建立了氧指数、体积电阻、拉伸强度、延伸率4项指标的数学模型并优化得到了综合性能优越的乙丙橡胶配方.其中对数模分析得出的推论与实验研究结果基本一致.最后,正交实验设计和均匀实验设计的对比证明了均匀设计的优越性.","authors":[{"authorName":"李定华","id":"c3338998-bbde-4ee9-a4c1-72cf820c76a6","originalAuthorName":"李定华"},{"authorName":"张沧","id":"d3809bcb-b043-4a80-9783-db77f17b19ec","originalAuthorName":"张沧"},{"authorName":"王建祺","id":"131a925e-0602-421c-8bf1-92682baf8b29","originalAuthorName":"王建祺"},{"authorName":"赵文元","id":"b8a0e13c-faf1-4bc0-88aa-c966032d2a5d","originalAuthorName":"赵文元"}],"doi":"","fpage":"171","id":"cb1e70ab-d628-44be-9acf-6f8710307bee","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8e995d32-7ac1-40ea-a701-64d70f921088","keyword":"实验设计","originalKeyword":"实验设计"},{"id":"8ae8400e-d4ed-405c-83da-c123381b9f90","keyword":"乙丙橡胶","originalKeyword":"乙丙橡胶"},{"id":"3a3deb2a-c14d-4735-9110-2c5f38d472d4","keyword":"配方优化","originalKeyword":"配方优化"},{"id":"24688ce5-9d9e-452a-b48b-52c4c534dae6","keyword":"无卤阻燃材料","originalKeyword":"无卤阻燃材料"}],"language":"zh","publisherId":"gfzclkxygc199906052","title":"阻燃乙丙橡胶配方实验的设计与优化","volume":"15","year":"1999"},{"abstractinfo":"采用水力学模拟和正交实验方法,研究了马钢CSP中间包内钢液的流动模式和夹杂物排除情况,提出了中间包内设置挡渣墙和坝流的优化控制方案,并给出了浇注过程中中间包合理液面高度的控制参数.","authors":[{"authorName":"黄社清","id":"e8ef74b7-1875-41fa-bca0-ae67513c9db7","originalAuthorName":"黄社清"},{"authorName":"茆勇","id":"337d8e14-a5ca-41d9-827b-b46f081bf329","originalAuthorName":"茆勇"},{"authorName":"潘远望","id":"98bc8f32-8c13-4f2d-ac53-055b8355aa59","originalAuthorName":"潘远望"},{"authorName":"文光华","id":"453879a1-5e25-401d-ba60-8730b987e5bb","originalAuthorName":"文光华"}],"doi":"10.3969/j.issn.1001-1447.2006.04.003","fpage":"10","id":"d66d5ef8-cc1b-4e5b-9f82-01eb182ec7c0","issue":"4","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"897dbde1-80f7-41d6-8d86-530bca39b98b","keyword":"CSP","originalKeyword":"CSP"},{"id":"3ed1044d-8b85-437a-8b9a-ba090923f9a4","keyword":"中间包","originalKeyword":"中间包"},{"id":"7a8298f2-e4bd-4ed4-8036-ac647992d8ca","keyword":"水力学模拟","originalKeyword":"水力学模拟"}],"language":"zh","publisherId":"gtyj200604003","title":"CSP中间包水模实验优化研究","volume":"34","year":"2006"},{"abstractinfo":"本文研究烧制煤矸石陶粒的原料比例和工艺制度.通过对煤矸石的成分分析确定烧制煤矸石陶粒的原料及原料配比;查阅相关资料制定了陶粒的预热温度、烧结温度、烧结时间等制备工艺参数,进行平行实验.依据基础实验结果制定影响陶粒性能的主要影响因素,进行烧制工艺优化实验,分析影响实验结果的因素.通过基础实验得出:当原料比例为煤矸石∶粉煤灰∶膨胀剂=78∶15∶7,烧结温度达到1150℃时,冷却,烧制的陶粒堆积密度785 kg/m3;筒压强度5.9 MPa;吸水率3.5%.通过优化分析,当以筒压强度为考核指标时最优方案A2B3C2、以堆积密度为考核指标时最优方案A2B2C1、以吸水率为考核指标时最优方案A3B1C2;影响最显著的因素是A.结论:煤矸石烧制的最佳工艺为预热温度为500℃,预热时间30 min;烧结温度为1 150℃;烧结时间为15 min;然后冷却.通过优化设计的极差分析和方差分析结果可知预热温度对陶粒性能影响最显著.","authors":[{"authorName":"陈彦文","id":"1ff44f15-6c52-4a45-8031-056c50de2e4f","originalAuthorName":"陈彦文"},{"authorName":"王宁","id":"34361f15-857d-4154-b72c-7a69af0ed31e","originalAuthorName":"王宁"},{"authorName":"潘文浩","id":"0eaf0803-f759-4a4d-93e1-241143d8e98c","originalAuthorName":"潘文浩"},{"authorName":"黄语嫣","id":"00c9bf2c-b1ef-4e26-a8ef-e0c0228a411a","originalAuthorName":"黄语嫣"},{"authorName":"张雅惠","id":"7ee7cee0-921a-470e-962e-9fcbf168e68d","originalAuthorName":"张雅惠"}],"doi":"","fpage":"841","id":"d914e5b0-0134-466b-bd5d-5d96f0a64c79","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e97a5e66-c2d5-4839-8b0d-6b01b1721f9f","keyword":"煤矸石","originalKeyword":"煤矸石"},{"id":"a7b1af6b-428c-4ad4-9061-39826e7a085e","keyword":"陶粒","originalKeyword":"陶粒"},{"id":"6500ef21-d13e-48e1-832d-1166f824246a","keyword":"吸水率","originalKeyword":"吸水率"},{"id":"f0a28bd1-a247-4059-9746-fb614ca34362","keyword":"表观密度","originalKeyword":"表观密度"},{"id":"5a106f63-3913-4e3a-97f6-f53a0dfd43b4","keyword":"焙烧制度","originalKeyword":"焙烧制度"}],"language":"zh","publisherId":"gsytb201503045","title":"煤矸石陶粒制备工艺的优化实验","volume":"34","year":"2015"},{"abstractinfo":"电流引线是连接超导低温装置室温电源与超导单元的桥梁,其漏热直接关系到低温系统的运行稳定与运行成本.本文对传统的气冷电流引线分段计算方法做了一定的改进,提出了气冷变截面电流引线优化设计方法.应用此方法为一个YBCO高温超导带材临界电流特性测试装置设计了变截面电流引线.通过对电流引线的温度场分布进行实验测量,并与设计值进行比较.结果吻合较好,证明了气冷变截面电流引线设计方法的有效性和实际优化效果.本文的设计方法及相关实验研究为变截面电流引线在超导低温装置中的实际应用提供了一定的参考.","authors":[{"authorName":"诸嘉慧","id":"e317e488-aebe-4c68-8425-fcecd09804f6","originalAuthorName":"诸嘉慧"},{"authorName":"田军涛","id":"b3302e6d-8231-4041-9f29-dfdbf410a407","originalAuthorName":"田军涛"},{"authorName":"丘明","id":"2042e821-b6b3-40cd-b615-caa28739e150","originalAuthorName":"丘明"},{"authorName":"杨斌","id":"8ed200de-7591-447f-bc3f-ae2cc3957907","originalAuthorName":"杨斌"},{"authorName":"陈盼盼","id":"24c236bf-604f-4251-ac0a-d9660eb3c14f","originalAuthorName":"陈盼盼"}],"doi":"","fpage":"203","id":"ebf5c128-a738-4210-8d22-83da091da16a","issue":"3","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"b860ecc6-1516-472e-bf8c-f4590c03eb0f","keyword":"变截面","originalKeyword":"变截面"},{"id":"724667e9-becd-4a8d-9e16-4f5a9d786b10","keyword":"气冷","originalKeyword":"气冷"},{"id":"72074855-72b3-4135-97a5-b282845b2d33","keyword":"电流引线","originalKeyword":"电流引线"},{"id":"38b23743-f16f-4bec-adfd-6b968d15a023","keyword":"优化设计","originalKeyword":"优化设计"},{"id":"e81c93d7-742e-43b2-9020-0147e873e218","keyword":"温度场测量","originalKeyword":"温度场测量"}],"language":"zh","publisherId":"dwwlxb201003011","title":"气冷变截面电流引线优化设计与实验研究","volume":"32","year":"2010"},{"abstractinfo":"质子交换膜燃料电池是一种能量转换装置,具有效率高、噪音低、无污染等优点.本文使用正交实验法和方差分析法研究了流场板结构、运行温度、阴阳极相对湿度和阴阳极流量对电池性能的影响,并对电池性能进行了优化.性能指标采用最大功率和最高效率.研究结果表明,流场板结构和运行温度对最大功率有显著影响,流场板结构和阳极流量对最高效率有显著影响.对所研究的电池下列组合可得最优性能:蛇形流场板-运行温度70℃-阴极相对湿度0%-阳极相对湿度100%-阴极流量0.263 SLPM-阳极流量0.525 SLPM.","authors":[{"authorName":"丁靖","id":"8b29a13f-b44c-4b23-bc7d-3c401ff74335","originalAuthorName":"丁靖"},{"authorName":"曹涛锋","id":"08c4e96a-8040-444d-9444-cd0653f2056a","originalAuthorName":"曹涛锋"},{"authorName":"林鸿","id":"1e7aea48-d867-4270-bc33-b7a56af8972f","originalAuthorName":"林鸿"},{"authorName":"母玉同","id":"bb72cdae-0a4b-4b19-b453-d815ec1be025","originalAuthorName":"母玉同"},{"authorName":"陶文铨","id":"250bc016-4587-4717-9a4d-acbefeea7892","originalAuthorName":"陶文铨"}],"doi":"","fpage":"1826","id":"e178e446-84ce-46da-afde-5ca41d25b664","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"36ef5b7d-2ef7-448f-b7c3-af80515ef13c","keyword":"质子交换膜燃料电池","originalKeyword":"质子交换膜燃料电池"},{"id":"c26656a1-0950-4f33-ab8a-ed7dea505eb9","keyword":"正交实验","originalKeyword":"正交实验"},{"id":"808435f9-8473-4e3f-916a-38c75084adb6","keyword":"方差分析","originalKeyword":"方差分析"}],"language":"zh","publisherId":"gcrwlxb201409032","title":"质子交换膜燃料电池性能优化实验研究","volume":"35","year":"2014"},{"abstractinfo":"目的 获得变曲率沟槽加工方法 研磨精密轴承钢球的最优工艺参数.方法应用田口法对变曲率沟槽加工方法研磨球体的参数进行实验和优化,以研磨压力、磨料粒径、磨料浓度为主要影响参数设计正交实验,以材料去除率、表面粗糙度和球度误差为评价指标,通过平均响应分析和方差分析得到最优研磨参数组合.结果 对于材料去除率,研磨压力的影响最显著,磨料粒径的影响次之,磨料浓度影响最小;对于表面粗糙度,磨料粒径的影响最大,磨料浓度的影响次之,研磨压力影响最小;对于球度误差,压力的影响最大,其他因素的影响较小.结论 在每球的研磨压力为5 N、磨料粒径为3000#(5μm)、磨料质量分数为25%的条件下,球体的材料去除率最大,可达到0.28 mg/h.在磨料粒径为5000#(3μm)、磨料质量分数为25%、每球研磨压力为2.5 N的条件下,球体的表面质量最佳,表面粗糙度最小达到12 nm.在每球研磨压力为0.5 N、磨料粒径为3000#(5μm)、磨料质量分数为50%的条件下,球度误差小.","authors":[{"authorName":"郑斌","id":"f6bb2ad7-c81d-4e8a-93c8-c4b2e4e4720a","originalAuthorName":"郑斌"},{"authorName":"袁巨龙","id":"4a30d17c-12d9-4a82-82c2-fe258124437c","originalAuthorName":"袁巨龙"},{"authorName":"赵萍","id":"62ebb92e-afef-4b5f-9df4-cfcb792c073b","originalAuthorName":"赵萍"},{"authorName":"吕冰海","id":"20fb0218-8729-4fd0-a173-6d2ee2eada6e","originalAuthorName":"吕冰海"},{"authorName":"周芬芬","id":"b06a19c1-a510-4b03-a953-fe77ee49faf8","originalAuthorName":"周芬芬"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.02.036","fpage":"214","id":"e206d966-88fe-4ce4-80ed-bc32ce3749fe","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"69ae15c8-11a6-4e83-bebe-04dec23cb56f","keyword":"参数优化","originalKeyword":"参数优化"},{"id":"a24162f3-140e-4b86-aab2-9a7ea493c83b","keyword":"精密球","originalKeyword":"精密球"},{"id":"2f857ca6-9084-4010-8c9d-191481e9842e","keyword":"变曲率沟槽","originalKeyword":"变曲率沟槽"},{"id":"11e4d288-028d-4de7-b59d-93c423c4c0b3","keyword":"田口法","originalKeyword":"田口法"},{"id":"6393e7ba-3fe0-4c66-a5a7-4757d2a4e31a","keyword":"材料去除率","originalKeyword":"材料去除率"},{"id":"2a6d6b54-1dcd-4fb2-9ce6-011ae69fde62","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"}],"language":"zh","publisherId":"bmjs201702036","title":"变曲率沟槽精密球研磨加工优化实验研究","volume":"46","year":"2017"},{"abstractinfo":"针对白云鄂博稀土尾矿矿物组成复杂、利用率低的问题,采用浮选工艺从尾矿中提取高品位稀土精矿.采用单因素实验方法,重点考察了药剂制度(pH值、抑制剂用量、捕收剂用量)及物理因素(磨矿粒度、矿浆浓度、浮选机调浆转速和浮选转速、充气量)对浮选指标的综合影响.单因素试验结果表明,稀土尾矿浮选的最佳工艺条件为:pH值8.1,抑制剂用量1000 g/t,捕收剂用量1000 g/t,磨矿粒度为-74 μm占88.53%,矿浆浓度30%,调浆转速2500 r/min,浮选转速2000 r/min,充气量0.2 m3/h;此条件下经一次粗选可获得稀土品位30.85%、回收率为72.13%的稀土粗精矿.基于此优化条件,采用“1粗2精1扫、中矿顺序返回”的闭路实验流程,最终可获得稀土品位为51.07%、回收率为62.99%的稀土精矿.","authors":[{"authorName":"韩华","id":"3be8713e-49bf-4d1d-8537-b1d3211595da","originalAuthorName":"韩华"},{"authorName":"李保卫","id":"6eb31b79-4e6e-4c1e-b625-47b472126027","originalAuthorName":"李保卫"},{"authorName":"李解","id":"35aaee4c-3808-4a28-b9d9-103ea0a5da8a","originalAuthorName":"李解"},{"authorName":"王建英","id":"686d7bd1-1c8d-4b20-81a7-3e7ec298e47d","originalAuthorName":"王建英"},{"authorName":"王介良","id":"161a8dfe-1c39-43ad-a55b-2c1fca12e00a","originalAuthorName":"王介良"},{"authorName":"张波","id":"10bc8a16-e672-4177-bbcd-f92725ec852f","originalAuthorName":"张波"}],"doi":"10.16533/J.CNKI.15-1099/TF.201601010","fpage":"60","id":"60266dc7-ba7f-4af6-8ea1-bb4a0251fd65","issue":"1","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"68365734-36cf-429f-997e-6d40c15e4eec","keyword":"稀土尾矿","originalKeyword":"稀土尾矿"},{"id":"81984d1c-588b-4d5c-a9b8-1fb4eaea701d","keyword":"浮选","originalKeyword":"浮选"},{"id":"defb47c3-4722-49bb-a97d-62fbc06469eb","keyword":"单因素实验","originalKeyword":"单因素实验"}],"language":"zh","publisherId":"xitu201601010","title":"基于单因素实验的稀土尾矿浮选工艺优化","volume":"37","year":"2016"},{"abstractinfo":"在溶剂型醇酸树脂配方设计的基础上 ,结合水性化的具体条件,设计出一种适用于水性醇酸树脂配方计算的方法.实验表明,该方法具有可行性,比纯粹靠经验确定配方方便、快捷、可靠.","authors":[{"authorName":"王国建","id":"cb282b71-a1dd-4ad0-85b6-3eb6638c0d9d","originalAuthorName":"王国建"},{"authorName":"赵彩霞","id":"26810e8d-def0-4ebe-bde5-7ae7b3630bbb","originalAuthorName":"赵彩霞"},{"authorName":"刘洋","id":"6dec9cb5-2e67-46a9-b2ae-9f081476be8a","originalAuthorName":"刘洋"},{"authorName":"赵磊","id":"d937ee26-448b-4900-818c-9ecf45fbf82f","originalAuthorName":"赵磊"}],"doi":"10.3969/j.issn.0253-4312.2008.03.019","fpage":"61","id":"968d486a-c861-4f1d-abd3-c00b5d0aea16","issue":"3","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"2ab644d3-10c7-459c-a98f-2ee40f7768a5","keyword":"水性醇酸树脂","originalKeyword":"水性醇酸树脂"},{"id":"0864cf4a-1096-498a-99bf-8fb66807a090","keyword":"配方设计","originalKeyword":"配方设计"},{"id":"e5fc442a-2b23-44d3-8cbf-5181bfef86ec","keyword":"醇酸树脂常数K","originalKeyword":"醇酸树脂常数K"},{"id":"0f2535c2-81af-47d5-b5db-e84818736e70","keyword":"成盐法","originalKeyword":"成盐法"}],"language":"zh","publisherId":"tlgy200803019","title":"水性醇酸树脂的配方设计及实验优化","volume":"38","year":"2008"}],"totalpage":4524,"totalrecord":45240}