{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"石化设备由于保温引起的腐蚀泄漏屡有发生,提取了某石化公司几种常用保温材料的可溶性组分,并分析了其腐蚀性成分.结果表明,海泡石、复合硅酸盐和超细玻璃棉的电导率、SO42-、Cl-含量最高,腐蚀性最大,应慎用;且而硅酸铝纤维中Cl-+F+含量最低,适用于奥氏体不锈钢设备的保温材料.","authors":[{"authorName":"","id":"96943416-8035-4e19-a5b8-1d7fe51c303d","originalAuthorName":"何贵堂"},{"authorName":"章炳华","id":"2df8f29d-f814-4cc7-9e48-4cf3cbf4881a","originalAuthorName":"章炳华"},{"authorName":"魏无际","id":"fc2f44aa-1029-47b7-bc4d-01c0acc6c7ba","originalAuthorName":"魏无际"},{"authorName":"连洲洋","id":"db325f4e-691e-4e2e-b405-862d6a0a8927","originalAuthorName":"连洲洋"}],"doi":"","fpage":"943","id":"a6ac2f98-ce5c-42b4-a9b8-374e13358a02","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"d5f05544-1baf-4e69-b149-d70df43d060d","keyword":"石化装置","originalKeyword":"石化装置"},{"id":"11d5aa17-ae1b-4b33-8bcf-e9bfc4638c75","keyword":"保温材料","originalKeyword":"保温材料"},{"id":"94761220-9059-4ea0-8e53-7a037adf1ce8","keyword":"腐蚀性成分","originalKeyword":"腐蚀性成分"},{"id":"49412b81-c974-4563-80c0-969de5c75a70","keyword":"分析","originalKeyword":"分析"}],"language":"zh","publisherId":"fsyfh201310021","title":"石化装置保温材料的腐蚀性","volume":"34","year":"2013"},{"abstractinfo":"2011年8日下午,利基金2011年度颁奖大会在京举行。我国高性能计算机领域杰出科学家、国防科技大学杨学军教授荣获“科学与技术成就奖”,丁伟岳等35人获“科学与技术进步奖”,吴朝晖等15人获“科学与技术创新奖”。中共中央政治局委员、国务委员刘延东向大会发来贺信,全国人大常委会副委员长桑国卫、全国政协副主席万钢出席会议并为获奖代表颁奖。利基金评选委员会主任朱丽兰向大会作工作报告。","authors":[],"doi":"","fpage":"45","id":"f37cc6ef-fc18-4992-bf12-87f4f2454c06","issue":"11","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"fb622aa9-b734-4f1c-b64e-92e6a4a88f1a","keyword":"科学家","originalKeyword":"科学家"},{"id":"6423a5d0-9de7-4a39-88fa-566072fd7e5d","keyword":"基金","originalKeyword":"基金"},{"id":"e733528d-7ae2-4e1f-b51c-af533f427e80","keyword":"中共中央政治局","originalKeyword":"中共中央政治局"},{"id":"8f9e518a-8e11-4218-a7b3-3c4611f804f7","keyword":"全国人大常委会","originalKeyword":"全国人大常委会"},{"id":"cddcb0f8-f641-4940-8dfd-f61da6f88936","keyword":"突出","originalKeyword":"突出"},{"id":"9ec15a38-d48c-406e-bf20-bd087ed406a0","keyword":"国防科技大学","originalKeyword":"国防科技大学"},{"id":"23458c7c-6c4e-4e81-b7cd-71807927d295","keyword":"计算机领域","originalKeyword":"计算机领域"},{"id":"b6a04d71-3662-490c-8d43-bef3fa71c865","keyword":"科学与技术","originalKeyword":"科学与技术"}],"language":"zh","publisherId":"zgcljz201111011","title":"2011年度利基金获奖科学家年轻化突出","volume":"30","year":"2011"},{"abstractinfo":"从理论上分析了采用真空蒸馏法分离铅中铅、银、铜、铋、锑的可行性,研究了蒸馏时间、蒸馏温度对铅中金属分离效果的影响规律。实验结果表明,当系统压力在10~20 Pa,温度在800℃以上,保温时间≥2 h时,铅和铋的挥发率接近100%,银和锑的挥发率随温度的升高、保温时间的增长而逐渐增大。当温度为850℃,保温时间为2 h时,所得残留物中铅、银、铜、铋、锑的含量分别为0.21%、45.31%、13.24%、0.0001%、33.6%,挥发物中铅、银、铜、铋、锑的含量分别为46.15%、0.236%、0.022%、8.87%、35.4%。","authors":[{"authorName":"包崇军","id":"892754f3-82fd-4d26-8b2a-7a985d5be010","originalAuthorName":"包崇军"},{"authorName":"蒋文龙","id":"ee09dad7-109d-407f-ad7c-5cc4de1efe34","originalAuthorName":"蒋文龙"},{"authorName":"李晓阳","id":"b6dfdb2f-f43d-42f2-b146-94ad2c089d63","originalAuthorName":"李晓阳"},{"authorName":"吴红林","id":"3dd5453d-7baa-4ee2-b02f-1c00703c8d91","originalAuthorName":"吴红林"},{"authorName":"邹利明","id":"14252ee7-e2ee-4b12-bd47-b0bb974eabe3","originalAuthorName":"邹利明"},{"authorName":"罗凌艳","id":"d4dadb7b-ba4a-4489-afbd-dfdf5ada3e4b","originalAuthorName":"罗凌艳"},{"authorName":"柯浪","id":"1ed7aced-dded-4cd8-9b24-2ef93472f036","originalAuthorName":"柯浪"},{"authorName":"许娜","id":"2ecfc2ad-da25-4c8f-ab3e-bea9cea9b8fa","originalAuthorName":"许娜"},{"authorName":"田林","id":"7dd6811d-a25d-4985-9dcc-e24c9eab878f","originalAuthorName":"田林"}],"doi":"","fpage":"31","id":"8d276d92-5362-4625-b264-5da4f70330d8","issue":"z1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"b67ae8fb-8a6e-499c-b899-bb81257fef54","keyword":"有色金属冶金","originalKeyword":"有色金属冶金"},{"id":"37726ddb-e999-45ef-a001-03fcbb31aedb","keyword":"真空蒸馏法","originalKeyword":"真空蒸馏法"},{"id":"f68cb13c-d6df-45ec-bb8f-cc9af58293cd","keyword":"铅","originalKeyword":"贵铅"},{"id":"3bf693ce-1bb1-4d15-a3c2-4c3b39b2b500","keyword":"金属分离","originalKeyword":"金属分离"}],"language":"zh","publisherId":"gjs2014z1008","title":"真空蒸馏法处理铅新工艺研究","volume":"","year":"2014"},{"abstractinfo":"目前,氰化浸金仍是从矿石中提取金最主要方法.从氰化浸出液(矿浆)中回收金在工业生产中应用的方法主要有锌粉置换法、活性炭吸附法、离子交换树脂吸附法、电沉积法等,而溶剂萃取法、液膜法等尚在试验研究中.文中叙述了从氰化液中(矿浆)回收金的各种方法的发展、机理、优缺点及行业应用和研究现状,并对回收方法的选择进行了分析讨论.","authors":[{"authorName":"陈淑萍","id":"f0bab11d-6da1-4cf4-a1a8-da8181289e57","originalAuthorName":"陈淑萍"}],"doi":"10.3969/j.issn.1001-1277.2012.02.011","fpage":"43","id":"af133372-dfec-47b8-a2b8-cd4d14b0a30a","issue":"2","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"d66a50a9-e205-437e-a61e-f77a1a393fb6","keyword":"氰化液","originalKeyword":"氰化贵液"},{"id":"8bc659fc-aef0-4545-a37b-edf158513fa8","keyword":"锌粉置换","originalKeyword":"锌粉置换"},{"id":"13b51b0b-0f28-4b3a-b457-22f155cb8e0c","keyword":"吸附","originalKeyword":"吸附"},{"id":"96ffb9b7-eda7-4432-877d-7d5e97932077","keyword":"回收金","originalKeyword":"回收金"}],"language":"zh","publisherId":"huangj201202011","title":"从氰化液(矿浆)中回收金技术进展","volume":"33","year":"2012"},{"abstractinfo":"提出了一个实用而简便的测定液中金和钯的方法.在瓷坩埚中蒸干液,残渣与混合试剂熔炼,灰吹,贵金属合粒用酸溶解,原子吸收法测定金和钯.该方法准确,适用范围广.","authors":[{"authorName":"林海山","id":"018ae545-a511-4550-80be-4839cc21187a","originalAuthorName":"林海山"}],"doi":"10.3969/j.issn.1001-1277.2002.05.014","fpage":"44","id":"acfc0866-2e86-44d3-80c5-6c8b2f050987","issue":"5","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"84a060b4-6883-4de1-a3cc-e03de16d5175","keyword":"简易试金","originalKeyword":"简易试金"},{"id":"9d57c679-96fe-4c8e-b676-6fe541de8136","keyword":"液","originalKeyword":"贵液"},{"id":"5ff6e6db-3dfd-4d22-b3d9-032c8cbf54a6","keyword":"金","originalKeyword":"金"},{"id":"5ac2cb9d-e763-4695-90c1-c27d3bbf9519","keyword":"钯","originalKeyword":"钯"}],"language":"zh","publisherId":"huangj200205014","title":"简易试金法测定液中的金和钯","volume":"23","year":"2002"},{"abstractinfo":"高铅金银矿粉氰化过程产生的高铅液,进一步采用锌粉置换时其中溶解的铅易被置换出来,从而使银泥品位大幅下降,且会对后续的冶炼作业带来困难。为解决液中高含量铅造成的影响,进行了降铅试验研究。其结果表明:通过控制浸出工艺碱度,液二次置换、Na2 CO3预先除铅,均可有效解决液中铅含量过高而对生产造成的影响。","authors":[{"authorName":"王文强","id":"2814c8ae-d491-48e5-bf2f-6160fb4a13a2","originalAuthorName":"王文强"},{"authorName":"王金超","id":"4a899c1d-e13f-437f-9aee-e4b5919b2634","originalAuthorName":"王金超"},{"authorName":"姜传进","id":"3755613f-e2e3-4fa6-9702-4d20fc1f5111","originalAuthorName":"姜传进"}],"doi":"10.11792/hj20160314","fpage":"64","id":"20d7db5b-6494-48b4-a5aa-3e0cc1d8e30c","issue":"3","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"7b55b97b-e6ad-49a6-af9c-1e3abd23dc53","keyword":"高铅液","originalKeyword":"高铅贵液"},{"id":"962d0e7a-6972-42aa-85fb-3178fcc59e02","keyword":"Na2 CO3除铅","originalKeyword":"Na2 CO3除铅"},{"id":"4f622fb3-e982-4bf2-9243-9bf42cb74f6c","keyword":"锌粉置换","originalKeyword":"锌粉置换"},{"id":"983efbd2-48a4-4dec-a81f-c9067f85d50d","keyword":"氰化","originalKeyword":"氰化"}],"language":"zh","publisherId":"huangj201603015","title":"金银氰化浸出中高铅液的产生原因及处理方法","volume":"37","year":"2016"},{"abstractinfo":"用电极过程动力学对从氰化液中直接电沉积金过程进行分析,可得出提高Au(CN)-2离子与阴极碰撞几率和减小析H2副反应是提高电沉积金效率的关键因素.采用多孔电极、析出H2小的电极材料和分两段电解措施,使从低浓度含金贵液中直接电沉积金的效率达到98%以上.","authors":[{"authorName":"张建武","id":"0ec1ec43-c401-4702-9d5d-af0840ccffa1","originalAuthorName":"张建武"},{"authorName":"张桂珍","id":"30afc453-8964-403c-ad9a-73d8a5940334","originalAuthorName":"张桂珍"},{"authorName":"吴仙花","id":"2082eeb5-479c-4b71-a10d-e2db3c715cb1","originalAuthorName":"吴仙花"},{"authorName":"盛桂云","id":"2bcfabcc-e002-4f0c-a3a1-63bbf1ef2db2","originalAuthorName":"盛桂云"}],"doi":"10.3969/j.issn.1001-1277.2006.10.010","fpage":"36","id":"e2572222-89a6-4f27-95d8-c8d6326b4cd1","issue":"10","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"18a81aec-d228-4001-9514-2c64403cdd1e","keyword":"直接电沉积金","originalKeyword":"直接电沉积金"},{"id":"5c7ac6f8-4531-4146-bbc2-111704f9b628","keyword":"碰撞几率","originalKeyword":"碰撞几率"},{"id":"657714fb-50fe-4c90-a004-b6ceb4354155","keyword":"析H2副反应","originalKeyword":"析H2副反应"},{"id":"79e4adf2-1985-409a-88c6-6f662fefce95","keyword":"稀液","originalKeyword":"稀贵液"}],"language":"zh","publisherId":"huangj200610010","title":"从稀液中直接电沉积金的研究","volume":"27","year":"2006"},{"abstractinfo":"研究了大洋多金属锰结核酸浸液中铁锰元素与铜、钴、镍有价金属的分离.根据溶液所含金属的特点,选用可以回收利用的MnO2作为Fe2+的氧化剂先将Fe2+氧化为Fe3+;采用黄铵铁矾法与Fe(OH)3相结合的二步法除铁工艺,并对溶液pH、反应温度、反应时间等操作参数进行优化,铁的沉淀率达到99.8%,净化后溶液中含铁量低于0.01 g/L,钴、铜、镍、锰的回收率分别达到99.5%、93.3%、99.6%、99.3%;硫化沉淀分离锰和铜、钴、镍过程中,硫化钠适宜用量为理论用量的4.5倍,适宜pH值4.5,适宜温度80℃,沉淀时间1 h,铜、钴、镍的沉淀率在99%左右,而锰的沉淀率仅为0.46%.","authors":[{"authorName":"孙春宝","id":"d1a44b57-ff7c-4df2-bdf9-abde7c42a488","originalAuthorName":"孙春宝"},{"authorName":"吕继有","id":"0b20399e-b239-46d1-b7f9-e91665550564","originalAuthorName":"吕继有"},{"authorName":"李浩然","id":"634531c5-b27d-418b-b2e8-0cf136e2b81c","originalAuthorName":"李浩然"}],"doi":"","fpage":"542","id":"90ecc86b-77b1-4ccb-9639-951ccffa0ada","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5bb1fc6a-aba5-4eb9-bebf-21545f0b1525","keyword":"大洋多金属结核","originalKeyword":"大洋多金属结核"},{"id":"a28ecdff-7ebe-4309-9c3b-b853ae8c0a94","keyword":"溶液净化","originalKeyword":"溶液净化"},{"id":"89828b07-7463-4c49-a348-ef0accd77f99","keyword":"沉淀法","originalKeyword":"沉淀法"}],"language":"zh","publisherId":"zgysjsxb200603027","title":"大洋多金属锰结核酸浸液中铁锰元素的脱除","volume":"16","year":"2006"},{"abstractinfo":"从含高铜、铅、锌液中直接用锌粉置换回收金,效果差.通过在锌粉置换作业中控制Pb(AC)2适宜用量,解决了铅、锌在流程溶液体系中积累、金置换率低及影响氰化浸出问题,保证了锌粉置换作业技术指标.","authors":[{"authorName":"卢辉畴","id":"4fff4ddf-528e-4abf-b674-43c2cf3285e5","originalAuthorName":"卢辉畴"}],"doi":"10.3969/j.issn.1001-1277.2004.04.012","fpage":"36","id":"7491ee59-964c-4460-a386-c221acff1797","issue":"4","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"7096c6be-8ded-4bd6-a95f-d6cd24191de7","keyword":"锌粉置换","originalKeyword":"锌粉置换"},{"id":"47703d7a-d084-4548-8947-af05a4a2b964","keyword":"Pb(AC)2","originalKeyword":"Pb(AC)2"},{"id":"d2818b0f-8b0e-4f0e-859f-f2bd9488dcd0","keyword":"积累","originalKeyword":"积累"},{"id":"f054feac-7d5a-4c7b-aa25-6f022bc89283","keyword":"置换率","originalKeyword":"置换率"}],"language":"zh","publisherId":"huangj200404012","title":"锌粉置换法从含高铜、铅、锌液中回收金的研究及生产实践","volume":"25","year":"2004"},{"abstractinfo":"针对紫金山金矿二选厂堆浸液进行了酸化-硫化沉淀法处理工艺的工业调试,结果表明:该技术不仅可以消除氰化物可溶性的铜矿物对低品位金矿浸出造成的不良影响,而且可以回收氰化物使其循环利用,还可以回收可销售的铜精矿,降低了黄金生产的运行成本,提高了企业的综合效益,在紫金山金矿和其他相似资源的金矿生产企业具有极大的推广价值。","authors":[{"authorName":"沈贤德","id":"8d5007bc-5892-4513-9527-9f64b02f1242","originalAuthorName":"沈贤德"}],"doi":"10.11792/hj20141117","fpage":"76","id":"41ff22dc-a596-46e2-a48d-fc19156858ea","issue":"11","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"ed136137-2c7f-4c61-abef-c6fa11072eca","keyword":"低品位金矿","originalKeyword":"低品位金矿"},{"id":"f40df56c-7962-4145-8230-3265a8094af7","keyword":"铜矿物","originalKeyword":"铜矿物"},{"id":"f746ed46-f09a-44e9-9e79-fdcea09183cb","keyword":"酸化-硫化沉淀","originalKeyword":"酸化-硫化沉淀"},{"id":"373374cb-05ed-4438-ab76-655877b0b5bd","keyword":"综合效益","originalKeyword":"综合效益"},{"id":"03c4e62e-685b-433e-85ab-333dbcd78c55","keyword":"推广价值","originalKeyword":"推广价值"}],"language":"zh","publisherId":"huangj201411017","title":"酸化-硫化沉淀工艺处理紫金山金矿堆浸液工业调试及评价","volume":"","year":"2014"}],"totalpage":7,"totalrecord":63}