{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立同时考虑颗粒和颗粒之间瞬间碰撞作用(瞬间接触)和非流化下颗粒滑动和滚动运动产生的颗粒半接触作用的颗粒碰撞-摩擦应力模型.推导具有普适性的固相动量守恒方程,建立高颗粒浓度气固两相流动模型,对喷动床内气体颗粒流动过程进行了数值模拟.模拟计算预测喷动床内喷射区、环隙区和喷泉区颗粒流动特性.预测喷动床内颗粒浓度和速度分布与他人实验结果相吻合.","authors":[{"authorName":"李响","id":"d414ab53-0d5d-416c-9597-495793f9af18","originalAuthorName":"李响"},{"authorName":"孙丹","id":"e517a599-2284-4925-b8c2-d4ff4e4db690","originalAuthorName":"孙丹"},{"authorName":"于龙","id":"446d5a1d-9722-43db-b451-3cda846288a5","originalAuthorName":"于龙"},{"authorName":"何玉荣","id":"a5ad4f13-338d-429c-a077-2a6c0a46381a","originalAuthorName":"何玉荣"},{"authorName":"杨仲明","id":"48395ea7-7513-441c-96e0-0b61e74e9c7e","originalAuthorName":"杨仲明"},{"authorName":"陆慧林","id":"a0410ed1-45ee-45e1-993d-3c8aa5943d10","originalAuthorName":"陆慧林"}],"doi":"","fpage":"68","id":"e39dd45e-1d2b-4472-b2f0-1cb459cb2c0f","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"96637f87-858c-4022-a591-53a98f3653f5","keyword":"气固喷动床","originalKeyword":"气固喷动床"},{"id":"66d48998-573d-429d-a149-f506fa072143","keyword":"摩擦-动力应力模型","originalKeyword":"摩擦-动力应力模型"},{"id":"04a18e63-dc15-4c76-8160-107248859424","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201001018","title":"基于摩擦-动力应力模型模拟喷动床气固流动","volume":"31","year":"2010"},{"abstractinfo":"基于统一二阶矩两相湍流应力模型和稠密颗粒动力学理论,建立了欧拉一欧拉双流体二阶矩颗粒摩擦应力模型。模型充分反映各向异性的气固两相相间雷诺应力相互作用,并引入有效颗粒弹性恢复系数,考虑了因颗粒表面不光滑产生的摩擦力对湍流流动结构和颗粒弥散特性的影响,对于下降管的计算结果与实验吻合较好。因颗粒摩擦产生能量耗散降低了颗粒温度和导致颗粒雷诺应力再分布。在入口和出口区域因颗粒碰撞频率较高而产生的能量耗散对流动结构影响明显。","authors":[{"authorName":"刘阳","id":"b3d1f57e-3b4d-4121-bc67-af689761b0be","originalAuthorName":"刘阳"},{"authorName":"刘学","id":"ede1bac6-8967-454c-bb48-1d9e4e4dd923","originalAuthorName":"刘学"},{"authorName":"刘朋","id":"a1dcfea4-df43-4670-95f0-653911827f83","originalAuthorName":"刘朋"},{"authorName":"蒋福伟","id":"267cb696-1b6e-47d8-8bed-7a1b164f0810","originalAuthorName":"蒋福伟"},{"authorName":"周力行","id":"6bdb5d0d-9de1-4ab0-a5c6-3c192fcc4705","originalAuthorName":"周力行"}],"doi":"","fpage":"163","id":"8a2fbf8c-cbcf-40d3-a407-ab71add6b78f","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"23d0702a-448f-49fc-b46c-6a6b2af22c69","keyword":"二阶矩颗粒摩擦应力模型","originalKeyword":"二阶矩颗粒摩擦应力模型"},{"id":"fcfc60a9-6e86-4808-aa36-b4d0d010252a","keyword":"稠密气固流动","originalKeyword":"稠密气固流动"},{"id":"7f5a3319-8472-4888-808a-1a901675f51d","keyword":"下降管","originalKeyword":"下降管"},{"id":"507d4c52-f211-4655-8a78-c0682b8f5476","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201201042","title":"稠密气固流动二阶矩摩擦应力模型和模拟","volume":"33","year":"2012"},{"abstractinfo":"采用弹塑性有限元法对带钢冷轧过程中接触区摩擦应力进行了模拟,分析了各种因素对摩擦应力分布的影响.利用数值方法对各影响因素对摩擦应力分布的影响进行参数拟合,从而建立各影响因素和摩擦应力分布间的特定关系,并对计算轧制力数学模型中的摩擦应力分布进行修正,使计算结果更为精确.","authors":[{"authorName":"朱光明","id":"c1a5426b-718e-416b-8074-3e58159b1f96","originalAuthorName":"朱光明"},{"authorName":"杜凤山","id":"56705060-fe3b-4f71-9121-287b9b8a02b1","originalAuthorName":"杜凤山"},{"authorName":"孙登月","id":"aec3704c-efd5-48ed-a325-ba6c6c166b62","originalAuthorName":"孙登月"},{"authorName":"郭振宇","id":"ce813f8f-3cdb-49a2-965e-7ac3c9a1a141","originalAuthorName":"郭振宇"},{"authorName":"周坚刚","id":"7cc7f2b3-b3ed-495f-9f27-7778f5412acb","originalAuthorName":"周坚刚"},{"authorName":"朱泉封","id":"730973b5-6639-4429-b78c-a696acb1973f","originalAuthorName":"朱泉封"}],"doi":"","fpage":"30","id":"eef04bf9-d81f-4d45-8136-f534e85e9c1b","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d6cb10f8-70a1-4dfc-98d2-553976da6fcf","keyword":"弹塑性","originalKeyword":"弹塑性"},{"id":"eb5b653e-efbf-4e21-a241-61c9062583d2","keyword":"有限元法","originalKeyword":"有限元法"},{"id":"26d1f8d3-9025-46fa-bdce-36f3bca05d52","keyword":"摩擦应力","originalKeyword":"摩擦应力"}],"language":"zh","publisherId":"gt200312009","title":"2030板带冷连轧系统在线控制模型接触摩擦应力分布","volume":"38","year":"2003"},{"abstractinfo":"为确定304不锈钢的孪生动力学模型及孪生对位错密度和变形抗力的影响规律,利用位错理论建立了含材料孪生动力学关系的本构关系模型,实测了材料的应力应变曲线,运用实测结果优化确定了本构关系模型中的待定常数,进而建立了材料的孪生动力学关系模型,本构关系模型还表明,在孪生条件下,材料的位错密度及变形抗力随变形程度增加而快速增大.","authors":[{"authorName":"李立新","id":"c43a439b-8797-41bc-9a92-7f94afb21f3d","originalAuthorName":"李立新"},{"authorName":"胡盛德","id":"c6e1778e-838f-4c04-86fe-d3f4d23cd0fe","originalAuthorName":"胡盛德"},{"authorName":"叶奔","id":"43935987-07bc-4163-ac6d-52c878b39d55","originalAuthorName":"叶奔"}],"doi":"","fpage":"56","id":"8acb2273-8054-42db-a6b3-ca3b4fceb8bb","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"8f15b43f-24f8-4978-9984-6d55a017b68d","keyword":"孪生动力学","originalKeyword":"孪生动力学"},{"id":"2e20c61a-0c20-4291-b330-2c2bd4979063","keyword":"位错","originalKeyword":"位错"},{"id":"78f1d404-b186-455b-bb2a-0d00dfc24ab4","keyword":"应力应变","originalKeyword":"应力应变"},{"id":"201dd9e4-deab-4d3f-a1c1-1db5a2542df4","keyword":"优化","originalKeyword":"优化"},{"id":"2ae99add-2867-48f1-8bd6-a949ee5481a5","keyword":"逆分析","originalKeyword":"逆分析"}],"language":"zh","publisherId":"gtyjxb201209011","title":"应力应变曲线逆分析确定孪生动力学模型","volume":"24","year":"2012"},{"abstractinfo":"为确定304不锈钢的孪生动力学模型及孪生对位错密度和变形抗力的影响规律,利用位错理论建立了含材料孪生动力学关系的本构关系模型,实测了材料的应力应变曲线,运用实测结果优化确定了本构关系模型中的待定常数,进而建立了材料的孪生动力学关系模型,本构关系模型还表明,在孪生条件下,材料的位错密度及变形抗力随变形程度增加而快速增大。","authors":[{"authorName":"李立新,胡盛德,叶奔","id":"658c1125-cc4a-461a-aa92-a30e8a905467","originalAuthorName":"李立新,胡盛德,叶奔"}],"categoryName":"|","doi":"","fpage":"56","id":"bd6a553a-7e45-4ab8-9a02-5bbb1f636930","issue":"9","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"4fad2724-20fd-4ef7-b3ec-622a02032cdb","keyword":"孪生动力学 ","originalKeyword":"孪生动力学 "},{"id":"1563e772-3482-4b3d-a1be-d18d7c062c26","keyword":" dislocation ","originalKeyword":" dislocation "},{"id":"aae39ce6-ec7a-495e-845a-8ffa91f729ce","keyword":" stress and strain ","originalKeyword":" stress and strain "},{"id":"11234265-4f1e-4745-a6ef-2f04cc17244f","keyword":" optimization ","originalKeyword":" optimization "},{"id":"3032f433-d3f1-44b6-ad70-c8a08299cfdc","keyword":" inverse analysis","originalKeyword":" inverse analysis"}],"language":"zh","publisherId":"1001-0963_2012_9_1","title":"应力应变曲线逆分析确定孪生动力学模型","volume":"24","year":"2012"},{"abstractinfo":"在Gleeble--3500热力学模拟实验机上对Q235A钢试样进行单道次和双道次热压缩实验,\n获得流变应力曲线. 把静态再结晶体积分数看作是时间的函数,\n将其与热变形结束后位错密度的变化联系起来. 通过\n对热压缩实验获得的流变应力曲线的逆分析,\n提出了确定静态再结晶动力学模型的新方法. 它可以取代\n传统的通过对淬火微观组织金相分析来估算静态再结晶动力学的方法.\n运用此方法于普碳钢的热压缩实验中,\n在一定的形变量范围内获得了静态再结晶动力学方程. 与已有的模型作比较,\n本文提出的方法仅\n需少量实验和计算即可获得准确的静态再结晶动力学模型.","authors":[{"authorName":"王健","id":"ab90438a-bb76-4267-94d1-2fd45a6cceda","originalAuthorName":"王健"},{"authorName":"肖宏","id":"74bebf13-8648-4ddc-95c4-185bf72e8888","originalAuthorName":"肖宏"},{"authorName":"张志国","id":"e5b0ef50-6d73-4c03-92d8-f46012a9dac7","originalAuthorName":"张志国"}],"categoryName":"|","doi":"","fpage":"837","id":"855290e4-de05-4849-affe-1919d362e400","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"74e4377c-ace4-4032-b1ab-9b3e51a412a1","keyword":"静态再结晶","originalKeyword":"静态再结晶"},{"id":"b798fe98-a294-42ac-b2ec-7c60b475e665","keyword":"flow curves","originalKeyword":"flow curves"},{"id":"caa5a927-157e-431e-bb9f-478bd865fd98","keyword":"hot compression","originalKeyword":"hot compression"}],"language":"zh","publisherId":"0412-1961_2008_7_9","title":"流变应力逆分析确定静态再结晶动力学模型","volume":"44","year":"2008"},{"abstractinfo":"在Gleeble-3500热力学模拟实验机上对Q235A钢试样进行单道次和双道次热压缩实验,获得流变应力曲线.把静态再结晶体积分数看作是时间的函数,将其与热变形结束后位错密度的变化联系起来.通过对热压缩实验获得的流变应力曲线的逆分析,提出了确定静态再结晶动力学模型的新方法.它可以取代传统的通过对淬火微观组织金相分析来估算静态再结晶动力学的方法.运用此方法于普碳钢的热压缩实验中,在一定的形变量范围内获得了静态再结晶动力学方程.与已有的模型作比较,本文提出的方法仅需少量实验和计算即可获得准确的静态再结晶动力学模型.","authors":[{"authorName":"王健","id":"11f54825-fa87-4778-9c10-abfb4ada1d39","originalAuthorName":"王健"},{"authorName":"肖宏","id":"7d76d9a0-111a-4e6e-8a33-cd79681dbfaa","originalAuthorName":"肖宏"},{"authorName":"张志国","id":"75ed42b2-65a7-44cd-9f3e-e0dc7bcf581a","originalAuthorName":"张志国"}],"doi":"10.3321/j.issn:0412-1961.2008.07.013","fpage":"837","id":"b7930865-03fb-436f-acd8-9457563e6bb6","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"56923f2d-8abe-4073-b9d6-c395efc9fc1d","keyword":"静态再结晶","originalKeyword":"静态再结晶"},{"id":"df91f2df-ca02-400f-be67-b16ee8ebcbcd","keyword":"流变应力曲线","originalKeyword":"流变应力曲线"},{"id":"b71236e7-8d00-47a6-a76a-cc197ac7957b","keyword":"热压缩","originalKeyword":"热压缩"},{"id":"a6b19e33-80d8-4246-a0fd-2311e4178d39","keyword":"逆分析","originalKeyword":"逆分析"},{"id":"c83500da-362a-4b6c-bbb4-8fd281af47ad","keyword":"位错密度","originalKeyword":"位错密度"}],"language":"zh","publisherId":"jsxb200807013","title":"流变应力逆分析确定静态再结晶动力学模型","volume":"44","year":"2008"},{"abstractinfo":"本构关系是影响模拟结果准确性的重要因素之一,本文采用一种数值模拟和压缩实验相结合的方法鼓度法,即由鼓度θ估算摩擦因子,然后通过主应力法公武去除压缩实验中摩擦因素的影响,得到6063铝合金的真实应力-应变曲线,并回归出本构方程.","authors":[{"authorName":"陈志英","id":"a0851480-66bc-4996-b58e-70413cbb2dc7","originalAuthorName":"陈志英"},{"authorName":"许树勤","id":"11d7b152-448d-4dd6-a9c6-f75f1e0676b7","originalAuthorName":"许树勤"},{"authorName":"董湘怀","id":"e58e6c32-1b4f-43a2-bf1e-83a3b5f14267","originalAuthorName":"董湘怀"},{"authorName":"阮雪榆","id":"da5b7e39-6423-4426-b311-590c3b58b5a9","originalAuthorName":"阮雪榆"}],"doi":"","fpage":"847","id":"5c00159c-8ba8-4937-9dbd-0af49936365e","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"2b09a70f-c346-4bb8-b5c2-de060f09068d","keyword":"本构方程","originalKeyword":"本构方程"},{"id":"46ab4b58-4085-4390-ab97-238aa04ac64c","keyword":"鼓度","originalKeyword":"鼓度"},{"id":"23013033-a84c-40b4-b9fe-bb3561866c77","keyword":"压缩实验","originalKeyword":"压缩实验"},{"id":"434ebbdb-0149-4638-b939-798bb38d812a","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"clkxygy200806027","title":"6063铝合金压缩实验摩擦修正及高温流动应力模型","volume":"16","year":"2008"},{"abstractinfo":"在文献[1]和[2]提出的模型的基础上,推导出金属材料在高温和弹性范围内因张应力引起的溶质非平衡晶界偏聚的动力学方程.","authors":[{"authorName":"徐庭栋","id":"a6f64bce-264d-4a0e-aaad-72960e0f94bb","originalAuthorName":"徐庭栋"}],"doi":"","fpage":"30","id":"e48a36b2-8491-47fb-a486-0896904b119d","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"351bd1d5-5262-41ff-84ee-69243e5a5e6c","keyword":"晶界","originalKeyword":"晶界"},{"id":"75444109-287f-4c50-b643-2068e4217796","keyword":"空位","originalKeyword":"空位"},{"id":"c0422e8f-a2ca-4947-ac4d-0df00d95e83d","keyword":"偏聚","originalKeyword":"偏聚"},{"id":"75e2e33f-8e4c-43ee-9326-e3042651dd43","keyword":"应力时效","originalKeyword":"应力时效"},{"id":"04bb3424-6bee-49df-81e2-412125c6a59f","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"gtyjxb200303008","title":"高温和低张应力引起的非平衡晶界偏聚动力学(Ⅰ)--理论模型","volume":"15","year":"2003"},{"abstractinfo":"TB6合金是一种高强高韧近β钛合金.采用Gleeble-3500热模拟试验机对铸态TB6钛合金进行了等温热压缩变形试验,变形温度范围为700~ 900℃,应变速率范围为0.001 ~1.000s-1,研究了铸态TB6合金热变形流变应力行为,分析了热压缩后的金相显微组织,基于摩擦修正后的流变应力曲线采用双曲正弦形式的修正Arrhenius关系对TB6钛合金的本构模型进行回归.结果表明:铸态TB6合金的热变形行为对变形温度和应变速率较为敏感,随着变形温度的降低和应变速率的增加流变应力显著增大;其热变形机制以动态回复和动态再结晶为主;得到铸态TB6钛合金热变形本构方程,比较回归模型计算的应力值与实测值其平均相对误差仅为1.48%,因此采用Z参数的双曲正弦函数形式能够较为精确地预测铸态TB6合金高温变形时的流变应力.以上研究为TB6钛合金塑性加工过程的模拟和控制提供了理论基础.","authors":[{"authorName":"段园培","id":"fe28af6e-f53c-47a1-afe6-f1ce9776793e","originalAuthorName":"段园培"},{"authorName":"黄仲佳","id":"10753b69-ebbd-428a-9c0c-a1a58525ccd3","originalAuthorName":"黄仲佳"},{"authorName":"余小鲁","id":"ef6f150f-3a2a-4340-8348-0ce7054b7254","originalAuthorName":"余小鲁"},{"authorName":"邢昌","id":"6803081f-e2ed-45b6-9167-adffbd152d53","originalAuthorName":"邢昌"},{"authorName":"孙宇峰","id":"0f8aeb4b-30a3-4a1b-9b85-43ba6a9da2e8","originalAuthorName":"孙宇峰"}],"doi":"10.13373/j.cnki.cjrm.2014.02.005","fpage":"202","id":"4c328e89-dcd4-4ba6-ac3f-094dc40e9cdd","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"56e84a76-af10-4e8b-bc14-c319787fcf33","keyword":"铸态TB6钛合金","originalKeyword":"铸态TB6钛合金"},{"id":"d440e555-616d-487b-8151-a131a3cb9711","keyword":"热变形","originalKeyword":"热变形"},{"id":"39c5638f-33d0-4bbd-8912-73edaa5c86c0","keyword":"流变应力","originalKeyword":"流变应力"},{"id":"968ddecc-fd16-44cf-b77d-88b9d1494207","keyword":"摩擦修正","originalKeyword":"摩擦修正"},{"id":"6fa4d1ce-c804-49d2-96ca-f869a832de08","keyword":"本构方程","originalKeyword":"本构方程"}],"language":"zh","publisherId":"xyjs201402005","title":"基于摩擦修正的TB6合金流变应力行为研究及本构模型建立","volume":"38","year":"2014"}],"totalpage":3766,"totalrecord":37660}