{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了采用碱式碳酸镍作为镍源在AZ91镁合金表面直接化学镀镍的工艺.该工艺采用酸洗活化一步法,即经过脱脂除油,再用H3PO4、NH4HF2以及缓蚀剂处理,无需活化.通过比较3种酸洗液的应用效果,确定60 mL/L H3PO4,40 g/L NH4HF2,30 g/L H3BO3的混合液作为酸洗液.酸洗最佳pH约为2,时间为25 s.实验发现,该法较HF活化得到的镀层表面颗粒更均匀.该Ni-P镀层结合力合格,硬度可达356.7 HV.讨论了热处理温度对镀层硬度的影响,结果表明随热处理温度的提高,镀层硬度也随之提高,在热处理温度为250 ℃时,硬度达最大.通过Tafel 曲线分析得出,AZ91镁合金采用该工艺进行化学镀镍后,耐蚀性有了很大改善.","authors":[{"authorName":"王建泳","id":"5e7a229f-4a6c-4ec4-a7e0-e1eebc0ce7ba","originalAuthorName":"王建泳"},{"authorName":"成旦红","id":"1bf1a9f8-dfc5-410e-b2e9-e03f56eaa1f4","originalAuthorName":"成旦红"},{"authorName":"张炜","id":"ffeaa785-a65c-42c7-b98b-8957cdffb4c5","originalAuthorName":"张炜"},{"authorName":"李科军","id":"7fc65fd4-13cd-4f82-9104-9f51f52bfa33","originalAuthorName":"李科军"},{"authorName":"曹铁华","id":"a6a4d0ca-4a8f-4f24-b2fb-386989b0c04b","originalAuthorName":"曹铁华"}],"doi":"10.3969/j.issn.1004-227X.2005.12.013","fpage":"42","id":"1ea1b4fa-927c-4f4b-9e4e-ee7104da6126","issue":"12","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"fb8f2ff6-bce5-421b-be67-993f036466c6","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"c94f2e24-7dfd-4427-a13a-09dcb52070da","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"82dda263-dcec-4a1a-8057-aa20f898c2ea","keyword":"预处理","originalKeyword":"预处理"}],"language":"zh","publisherId":"ddyts200512013","title":"镁合金化学镀镍工艺","volume":"24","year":"2005"},{"abstractinfo":"铜具有比铝更低的电阻率、更优异的抗电迁移性能,使用铜作为互连线材料不但可以减少RC延迟,而且还能提高集成电路的可靠性.在超大规模集成电路(ULSI)制造中用铜取代铝作为互连材料的铜互连技术发展非常迅速,铜互连工艺采用了许多新的技术,其中电沉积铜就是核心技术之一.介绍了目前ULSI铜互连中电沉积铜技术所涉及到的镀液组成、脉冲电流的应用、电沉积装置和性能等方面的研究状况.","authors":[{"authorName":"张炜","id":"665d1878-634a-4765-ad41-d4c3d5468359","originalAuthorName":"张炜"},{"authorName":"成旦红","id":"e9b3d45a-93c0-4ce6-8e84-37b4f9c05fc5","originalAuthorName":"成旦红"},{"authorName":"王建泳","id":"31ed6435-ac53-41cd-b54a-ae48dec836d2","originalAuthorName":"王建泳"},{"authorName":"郁祖湛","id":"3169368b-f06b-4601-b9a4-89758e0705c0","originalAuthorName":"郁祖湛"}],"doi":"10.3969/j.issn.1001-1560.2005.12.011","fpage":"33","id":"8a476c79-3f43-4b40-b394-457d14bfab03","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"8a124f73-8010-45f3-a56e-2855a066fb97","keyword":"电沉积铜","originalKeyword":"电沉积铜"},{"id":"4cd5fccf-b505-403e-bbf2-be0d94a3b72c","keyword":"脉冲电沉积","originalKeyword":"脉冲电沉积"},{"id":"7a8319e3-7b06-4361-891b-2853ab3f959a","keyword":"超大规模集成电路","originalKeyword":"超大规模集成电路"},{"id":"4fee3bda-db85-45de-87da-b806aed982b2","keyword":"互连","originalKeyword":"互连"}],"language":"zh","publisherId":"clbh200512011","title":"超大集成电路互连线电沉积铜的研究动态","volume":"38","year":"2005"},{"abstractinfo":"采用正交试验,以镀层显微硬度为评价标准,得到银-纳米SiO2脉冲复合电镀的最佳工艺条件为:6 mg/L的阳离子表面活性剂,100mg/L的非离子表面活性剂,15g/L的纳米SiO2,脉宽0.5ms,占空比40%,脉冲平均电流密度0.8~1.1A/dm2.正交试验结果表明,纳米SiO2含量对镀层的影响较大.该镀液分散能力(采用远近阴极法测定)为61%,覆盖能力近似为100%,镀层硬度为246.5HV,钎焊性较好.经研究发现,空气搅拌较机械搅拌更有利于纳米微粒在镀层中的分散.XRD测试得出,复合镀层在(111)面上的择优取向得到显著加强,进一步证实该镀层结晶致密,耐蚀性较纯银镀层好.","authors":[{"authorName":"苏永堂","id":"b5f40f52-bce3-431d-b5d3-c81e7b75fe84","originalAuthorName":"苏永堂"},{"authorName":"成旦红","id":"2dff1971-75b3-42bc-bb3c-51fe3bd7cce7","originalAuthorName":"成旦红"},{"authorName":"张庆","id":"d75835c3-723a-495e-975a-b7a2f2844f38","originalAuthorName":"张庆"},{"authorName":"王建泳","id":"2344583d-a0b7-4d16-a37f-ecb23347cfce","originalAuthorName":"王建泳"},{"authorName":"郭长春","id":"646606cd-f1ae-48d7-a37c-9124fea54633","originalAuthorName":"郭长春"}],"doi":"10.3969/j.issn.1004-227X.2005.10.002","fpage":"5","id":"c34c65e8-13aa-499f-833f-acb1d7c2fd72","issue":"10","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"fc02076e-1d8d-404d-a532-091ebda8c682","keyword":"脉冲电镀","originalKeyword":"脉冲电镀"},{"id":"06465085-292f-416b-9f0c-717803a06ffc","keyword":"银-纳米SiO2复合镀层","originalKeyword":"银-纳米SiO2复合镀层"},{"id":"669c65db-09e7-4b17-af0f-2851ac69f0ad","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"cb186f7a-3a6e-4d8a-ac5c-8897ed2d8262","keyword":"硬度","originalKeyword":"硬度"},{"id":"e44e4fe7-5da6-43d3-b0fd-d975583fc89c","keyword":"分散能力","originalKeyword":"分散能力"},{"id":"001d48b9-8025-4fd4-b6c5-d3954ef0c5e0","keyword":"覆盖能力","originalKeyword":"覆盖能力"},{"id":"b2ea272b-cea6-44a4-b803-ce602ce03ed5","keyword":"钎焊性","originalKeyword":"钎焊性"}],"language":"zh","publisherId":"ddyts200510002","title":"银-纳米SiO2脉冲复合电镀工艺条件的优化与性能研究","volume":"24","year":"2005"},{"abstractinfo":"研究了在AZ31镁合金表面二次浸锌后直接进行化学镀镍的工艺.分析了pH、温度、镍离子质量浓度和次磷酸钠质量浓度对镀速的影响,并测试了镀层的结合力、表面形貌、成分含量和耐蚀性.结果表明,以二次浸锌法进行预处理,无需氰化镀铜打底;在pH为7,碱式碳酸镍质量浓度25g/L,次磷酸钠质量浓度30g/L时,镀速有最大值;AZ31镁合金化学镀镍后耐蚀性明显提高,腐蚀电位从-1.52 V提高到-0.55 V;化学镀镍的优化参数为15g/L碱式碳酸镍,25g/L次磷酸钠,pH为6,温度82℃.","authors":[{"authorName":"王建泳","id":"127a6aaf-50b5-46f0-9a08-7695f1e271f0","originalAuthorName":"王建泳"},{"authorName":"成旦红","id":"8b7eac5b-c97a-48fe-bf74-696606f5ed33","originalAuthorName":"成旦红"},{"authorName":"张庆","id":"2599dd23-dd10-48b1-bc48-00c13ce9ee06","originalAuthorName":"张庆"},{"authorName":"李科军","id":"2a43e42c-9656-4c39-810d-e8b85dea7b25","originalAuthorName":"李科军"},{"authorName":"苏永堂","id":"43452dc9-d10c-4bb6-a33d-d0e85b8a6130","originalAuthorName":"苏永堂"}],"doi":"10.3969/j.issn.1004-227X.2006.03.013","fpage":"43","id":"e2c3549c-f625-4ebf-8a94-21e08cd6b76e","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"805f0fc5-5213-403a-8aca-66ff219d8f14","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"0e81f885-eadd-4dcf-9f1d-84ad753fab46","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"78c058b8-d1ed-4c45-8433-3c1685e91fbe","keyword":"镍磷合金AZ31","originalKeyword":"镍磷合金AZ31"},{"id":"57172b17-3bc5-43a7-802d-3f607c0e6f99","keyword":"腐蚀电位","originalKeyword":"腐蚀电位"}],"language":"zh","publisherId":"ddyts200603013","title":"AZ31镁合金无氰化学镀镍工艺的研究","volume":"25","year":"2006"},{"abstractinfo":"自泳涂装是通过化学反应在钢铁基材表面形成漆膜的一种涂装方式.介绍了自泳涂装的反应机理及涂装工艺,通过与阴极电泳的比较分析了自泳涂装的漆膜性能及优缺点,认为自泳涂装可在一定范围内替代阴极电泳.","authors":[{"authorName":"赵兴建","id":"78498811-67b9-405e-9c8f-93cd7ee7faa7","originalAuthorName":"赵兴建"},{"authorName":"孔德炳","id":"48ecfa9f-26d6-4095-8659-78f3e078996e","originalAuthorName":"孔德炳"},{"authorName":"赵照军","id":"abedaeb8-ba47-4415-9a61-690d183fd76a","originalAuthorName":"赵照军"}],"doi":"10.3969/j.issn.1001-1560.2005.03.020","fpage":"67","id":"b530de49-f8e6-49b0-9d1e-7d114fe24d02","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"742949d0-bb01-4b72-a8ce-189a302060fa","keyword":"自泳涂装","originalKeyword":"自泳涂装"},{"id":"6427ffae-ef38-4e2e-be1b-79ae3a4335d5","keyword":"工艺","originalKeyword":"工艺"},{"id":"4c88d138-cabd-448c-baa0-6bbfdce313cd","keyword":"阴极电泳","originalKeyword":"阴极电泳"},{"id":"b70e11d6-6b5d-4538-910c-c67e81f91b57","keyword":"涂层性能","originalKeyword":"涂层性能"}],"language":"zh","publisherId":"clbh200503020","title":"自泳涂装工艺及应用","volume":"38","year":"2005"},{"abstractinfo":"本文基于流体内部温度梯度的剪切变化特征,提出颗粒在流体中会受到热泳升力的观点.该力与热泳现象中的粒子运动相关但不同于热泳力.介绍了求解得到该热泳升力的两种思路.比拟速度剪切流动中颗粒受到流体作用的升力的过程,给出了颗粒在温度梯度作用下受到的热泳升力的表达式.本文指出该热泳升力与流体平均温度梯度方向垂直,并且指向梯度较大的部分.针对碳纳米管热驱动和暖气片熏墙的例子,分析了热泳升力的作用.","authors":[{"authorName":"董双岭","id":"f1020f2f-d597-4354-b834-ebb9ca16803c","originalAuthorName":"董双岭"},{"authorName":"曹炳阳","id":"b6d7c720-e687-4bac-8639-b370d3f978e6","originalAuthorName":"曹炳阳"},{"authorName":"过增元","id":"7f176ae4-cd01-4f78-a8f9-0fdaee0a5d89","originalAuthorName":"过增元"}],"doi":"","fpage":"1063","id":"131d1113-c460-4ba9-8f2c-8e7b59f46e4e","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4b9af3ad-700f-4ba1-a81c-a2d0aa793599","keyword":"热泳","originalKeyword":"热泳"},{"id":"3e9c8f75-ddda-4862-bfde-b7d49692e14b","keyword":"热泳升力","originalKeyword":"热泳升力"},{"id":"df9552fe-2125-4741-b867-7a81505085c5","keyword":"滑移流区","originalKeyword":"滑移流区"},{"id":"31876873-ca90-4b42-84ab-8fffa701497c","keyword":"Saffman升力","originalKeyword":"Saffman升力"}],"language":"zh","publisherId":"gcrwlxb201505029","title":"作用在粒子上的热泳升力研究","volume":"36","year":"2015"},{"abstractinfo":"介绍了3种汽车车身电泳涂装现场测量泳透力的方法,即电位仪测量法、一米钢条测量法和泳透力盒测量法.比较了这3种测试方法的优缺点.其中,泳透力盒测量法以检测结果能够量化,有较高的精度,重复性和再现性好,对车型结构没有特殊要求,有合理的判定标准以及能够在生产现场灵活使用等优点而被确定为较佳的泳透力现场测量方法.","authors":[{"authorName":"华云","id":"d8b35fb5-5d0e-46cb-ba53-949edb97d754","originalAuthorName":"华云"},{"authorName":"王辉","id":"35c7a1c8-9071-4667-a356-f93b24ef56e4","originalAuthorName":"王辉"},{"authorName":"周磊","id":"5323cdef-451e-45c8-bc22-f8ebe1b0200c","originalAuthorName":"周磊"},{"authorName":"董文超","id":"edbb4cb2-2164-46a3-9019-a5ba6a2178d2","originalAuthorName":"董文超"}],"doi":"","fpage":"68","id":"453442ed-b00e-4dca-a2d4-ebe8ebc84e8b","issue":"10","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"86173b5b-6e2a-4771-a338-f02640738be3","keyword":"汽车车身","originalKeyword":"汽车车身"},{"id":"de28dbc4-e723-4783-ab73-f513c82fea87","keyword":"电泳","originalKeyword":"电泳"},{"id":"f58049d5-a7a0-4916-80c1-78b615876d80","keyword":"泳透力","originalKeyword":"泳透力"},{"id":"098cb4a4-d037-4318-853f-445bc4eaf4c1","keyword":"现场测量","originalKeyword":"现场测量"}],"language":"zh","publisherId":"ddyts201210018","title":"汽车电泳涂装泳透力现场测量方法","volume":"31","year":"2012"},{"abstractinfo":"笔者根据几年来的阴极电泳涂装线建线经验,介绍了新建阴极电泳涂装线的清洗、建槽、试生产运行调试及日常管理的关键问题及注意事项.","authors":[{"authorName":"金荣刚","id":"f6f64836-f4c3-49b6-8785-d2532d9fc868","originalAuthorName":"金荣刚"}],"doi":"10.3969/j.issn.0253-4312.2003.01.009","fpage":"23","id":"ee884b3d-3ddb-44a8-8f4c-25da97c5e7e2","issue":"1","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"b64ef97a-ed4c-478e-bb1d-f86e946d4f72","keyword":"阴极电泳涂装线","originalKeyword":"阴极电泳涂装线"},{"id":"64e2ebc2-8483-4f22-8b18-c51548fee0d9","keyword":"清洗","originalKeyword":"清洗"},{"id":"50438fd5-ec56-42ee-ba02-5fecd4b115aa","keyword":"建槽","originalKeyword":"建槽"},{"id":"944199e4-aa81-4af5-a3f0-5651ad6905e8","keyword":"运行调度","originalKeyword":"运行调度"},{"id":"0d6f45ce-50c4-4751-a9e0-b66611f4ff8c","keyword":"日常管理","originalKeyword":"日常管理"}],"language":"zh","publisherId":"tlgy200301009","title":"阴极电泳涂装线建线方案","volume":"33","year":"2003"},{"abstractinfo":"介绍了丙烯酸酯类、聚偏二氯乙烯(PVDC)和环氧树脂类的自泳涂料制备技术及漆膜性能,探讨了自动沉积槽液的配制和涂装工艺.对PVDC类自沉积涂料,不用含铬化合物反应型浸渍,漆膜耐盐雾可达600 h以上.自泳涂装是继阴极电泳后在金属表面涂装的一种新型技术.","authors":[{"authorName":"郭燕鹏","id":"a233c244-f1b3-4af3-b928-cdef90ba5593","originalAuthorName":"郭燕鹏"},{"authorName":"王小妹","id":"c82ecee7-dc02-446c-b398-4ab60ce034b9","originalAuthorName":"王小妹"}],"doi":"10.3969/j.issn.0253-4312.2007.10.016","fpage":"56","id":"71aed7f8-f60d-48cf-a38e-6ebe5565a174","issue":"10","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"85f2c6f6-b640-49dd-b68a-5811554938c3","keyword":"自泳涂料","originalKeyword":"自泳涂料"},{"id":"557ca680-5118-428c-8f8f-e58aabe6f8a8","keyword":"聚丙烯酸酯","originalKeyword":"聚丙烯酸酯"},{"id":"3e33971f-a48c-4178-a474-e8251db31044","keyword":"聚偏二氯乙烯","originalKeyword":"聚偏二氯乙烯"},{"id":"1159281d-dfbb-4961-a42d-b2a459e5c2d3","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"587fb1ee-007c-4cfb-8269-3c8c3e36c125","keyword":"涂装工艺","originalKeyword":"涂装工艺"}],"language":"zh","publisherId":"tlgy200710016","title":"水性自泳涂料及涂装技术进展","volume":"37","year":"2007"},{"abstractinfo":"磁泳是实现生物分离的主要手段之一.利用功能磁珠在微流控芯片上实现高效磁泳分离是近年来的研究热点.对直径为1μm的超顺磁磁珠在当量直径为114.3μm的矩形微通道内的磁泳分离特性进行了实验研究.利用高速CCD观测了磁珠在微通道内捕获与释放的全过程,并通过图像分析,得到了磁珠的捕获情况随时间及流速的变化规律.实验发现,在高流速时,捕获数量随着时间呈现线性增加,而在低流速时,捕获数量增加的速度随时间逐渐变缓;在一定磁场下,存在一个临界流体速度,当流体速度小于此临界速度,捕获磁珠数较多,大于此临界速度,捕获数量则迅速下降,且下降速度随流速增加而趋缓.研究对认识微通道内磁珠运动规律以实现快速高效的磁泳分离具有一定的指导意义.","authors":[{"authorName":"吴信宇","id":"6dab0c88-d3c6-405b-9ff2-8fda6a272ccb","originalAuthorName":"吴信宇"},{"authorName":"吴慧英","id":"0dc8a616-b704-49bc-b7bd-ac304ec43c19","originalAuthorName":"吴慧英"},{"authorName":"唐慧敏","id":"a07d6bf4-4fc2-40b4-b3cb-e35e67e0ebbf","originalAuthorName":"唐慧敏"}],"doi":"","fpage":"1147","id":"d39d1191-1165-487b-a258-bfa614d5baaf","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d1a11827-b324-457d-9963-71c0a528449f","keyword":"微流","originalKeyword":"微流"},{"id":"6734cb72-e104-4c71-931b-9422004b86de","keyword":"功能磁珠","originalKeyword":"功能磁珠"},{"id":"dcf3f3d3-2325-4347-a39a-65da0296aa7d","keyword":"磁泳分离","originalKeyword":"磁泳分离"},{"id":"f6c9ffc5-52eb-4d0e-bf4e-e1e8f1add389","keyword":"高通量","originalKeyword":"高通量"},{"id":"304fb12a-4e23-450a-a8b9-bdb0e155a468","keyword":"微通道","originalKeyword":"微通道"}],"language":"zh","publisherId":"gncl201106048","title":"微通道内高通量磁泳分离实验研究","volume":"42","year":"2011"}],"totalpage":20,"totalrecord":192}