{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"蜘蛛丝和聚乳酸都是良好的生物医用材料,以质量分数分别为1%和9%的蜘蛛丝和聚-L-乳酸的混合液为纺丝溶液,通过改进型静电纺丝方法,制备了由定向排列的蜘蛛丝蛋白/聚-L-乳酸复合纳米纤维构成的连续纱线.探讨了蜘蛛丝蛋白含量对纤维直径、纱线线密度及力学性能等的影响,以及纱线的尺寸稳定性和细胞增殖性.研究发现:随着蜘蛛丝蛋白含量的增加,纤维直径从纯PLLA时的1.1gμm减小到382nm(含蜘蛛丝蛋白10%),蜘蛛丝蛋白含量4.5%时,纱线强度达到最大值;该纱线在水中尺寸稳定;静电纺PLLA和蜘蛛丝/PLLA复合纤维毡对成纤维细胞具有良好的增殖性,含蜘蛛丝蛋白时,纤维的OD值明显升高.","authors":[{"authorName":"赵静娜","id":"d81111a7-fb57-414b-8527-81d0be8a01ed","originalAuthorName":"赵静娜"},{"authorName":"张敏","id":"fda7028b-98b8-4bb7-839a-ad8bd2d81e86","originalAuthorName":"张敏"},{"authorName":"王建南","id":"b4169752-6f70-43be-b25d-e2e622bbd161","originalAuthorName":"王建南"},{"authorName":"潘志娟","id":"64c862d2-95c8-410c-b6ae-5ac193dd43c0","originalAuthorName":"潘志娟"}],"doi":"","fpage":"412","id":"0d9fe1bc-51d2-4ff5-89e6-3928a7e81046","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"18e24327-6b55-4081-9088-e9cfe08affd1","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"63d60771-69fa-4f06-95c4-4e40e23fdf2f","keyword":"聚-L-乳酸","originalKeyword":"聚-L-乳酸"},{"id":"c24f486f-f735-47f8-a916-147eb6d6a5b7","keyword":"蜘蛛丝","originalKeyword":"蜘蛛丝"},{"id":"4f8ef72b-f8a7-4aab-9de7-6fcc9940a068","keyword":"纤维直径","originalKeyword":"纤维直径"},{"id":"84645b7b-02fc-48ed-89de-6d9d4a56b0fd","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b6f9c79f-ab03-4a40-a5bc-3821fcbfe3e9","keyword":"细胞增殖性","originalKeyword":"细胞增殖性"}],"language":"zh","publisherId":"clkxygc201003022","title":"蜘蛛丝/PLLA复合纳米级纤维纱的纺制及其细胞增殖性","volume":"28","year":"2010"},{"abstractinfo":"以1%(质量分数,下同)蜘蛛丝和9%聚-L-乳酸(PLLA)的混合液为纺丝溶液,采用静电纺丝方法制备了蜘蛛丝/PLLA复合纤维构成的连续纱线.探讨了纺丝温度、卷绕速度、后拉伸倍数等对纤维和纱线的形态结构及力学性能的影响.研究发现,加入蜘蛛丝蛋白后,PLLA复合纱线的强度提高了13%,纤维直径从1.1 μm减小到了550 nm;加热区温度为150℃时纱线强度最大;卷绕速度为(105±5)r/min时可以实现稳定纺丝;拉伸1.5倍时,纱线断裂强度和初始模量分别提高了66%和92%,断裂伸长率下降.","authors":[{"authorName":"赵静娜","id":"26814fcf-25f9-4500-be86-5bd30d75cd9d","originalAuthorName":"赵静娜"},{"authorName":"刘洋","id":"76be6988-43e8-418c-a6c4-639abd690d16","originalAuthorName":"刘洋"},{"authorName":"潘志娟","id":"c4489ff3-7be0-4a83-8528-ffad315f4909","originalAuthorName":"潘志娟"}],"doi":"","fpage":"69","id":"6669398a-e9b4-4c1c-8ddd-9592b9eb110e","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3d66cf17-b6c8-4c2e-8fba-43a4aa20fcc5","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"58a6d597-1ded-48e3-ab45-e800a588bf93","keyword":"聚-L-乳酸","originalKeyword":"聚-L-乳酸"},{"id":"4cda917a-447a-42c4-8236-d4394d73ca5b","keyword":"蜘蛛丝","originalKeyword":"蜘蛛丝"},{"id":"ca79265f-546b-4219-9984-dd205b6f416b","keyword":"纤维直径","originalKeyword":"纤维直径"},{"id":"8cf0da4b-d1fc-454a-baae-ab2888a25f26","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201005019","title":"蜘蛛丝/聚-L-乳酸静电纺纤维束的形貌和力学性能","volume":"26","year":"2010"},{"abstractinfo":"通过乙酰丙酮钇与聚碳硅烷反应,得到分子量适中(Mw=2816)、GPC曲线呈双峰分布、具有优异可纺性的新型先驱体含钇聚碳硅烷,在控制纺丝温度和压力后,得到表面光滑、无裂纹、直径为5.3 μm的原纤维.讨论了原纤维直径对纤维制备工艺及性能的影响.降低纤维直径,有利于减少纤维缺陷,提高纤维强度和柔顺性.当纤维直径为6.20 μm时,抗张强度为3.52 GPa,且随直径减小,抗张强度呈线性增长趋势,为制备新型含异质元素耐超高温SiC纤维奠定了基础.","authors":[{"authorName":"杨大祥","id":"2c259476-872d-4ddd-9923-a12bc876cfa1","originalAuthorName":"杨大祥"},{"authorName":"宋永才","id":"edef0b8d-9a90-413b-9fdd-d7ed99bb07fb","originalAuthorName":"宋永才"}],"doi":"","fpage":"619","id":"f804372e-81d1-49e2-a538-6ae0c53599a8","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"751ec5f5-56c5-4e81-b257-64ccb7394cec","keyword":"碳化硅纤维","originalKeyword":"碳化硅纤维"},{"id":"a24e1489-ebfc-48b9-b821-c3364b912624","keyword":"含钇聚碳硅烷","originalKeyword":"含钇聚碳硅烷"},{"id":"5007ef76-4041-4124-8790-571fd0bc0392","keyword":"先驱体","originalKeyword":"先驱体"},{"id":"81938d84-99e3-4ff6-9252-add10458fcb9","keyword":"纺丝性","originalKeyword":"纺丝性"}],"language":"zh","publisherId":"xyjsclygc2008z1162","title":"控制含钇碳化硅纤维直径及纤维性能","volume":"37","year":"2008"},{"abstractinfo":"采用静电纺丝的方法研制了再生丝素纳米纤维(ERSF)膜,纤维直径为50~1000nm.将脱胶后的桑蚕丝溶解在摩尔比为1:2:8 的60℃CaCl2/CH3CH2OH/H2O三元体系中,将该溶液冷冻干燥后溶解在98%的甲酸中得到再生丝素溶液,对其进行静电纺丝.研究了不同纺丝条件下,静电纺再生丝素纤维的直径分布.研究发现:在一定的电压和喷丝头与接收屏的距离(C-D)下,7wt%是具有良好可纺性的临界浓度.纤维的直径随着溶液浓度的增加而增大,随着C-D的增加而减小,并且在C-D较大时可以获得较均匀的纤维.电压是另一个影响纤维直径的重要因素,当电压高于某一数值时,可以纺得细而均匀的纳米级再生丝素纤维.在9wt%,12cm C-D and 15KV 的纺丝条件下,80%的纤维直径在50~150nm之间.由于所纺得的再生丝素纤维膜在水中会产生收缩,因此用甲醇和丙酮对其进行处理.力学性能是影响纤维膜实际使用的重要性能,我们测定和分析了静电纺再生丝素纤维膜处理前后的力学性能.","authors":[{"authorName":"潘志娟","id":"101c8ae6-0900-41ec-9130-2f38df8b4d19","originalAuthorName":"潘志娟"},{"authorName":"邱芯薇","id":"5c0b5944-3261-485d-8f73-f77083d0610f","originalAuthorName":"邱芯薇"},{"authorName":"李春萍","id":"5bef59d5-73d2-4ce1-a033-045e4c632b23","originalAuthorName":"李春萍"},{"authorName":"王建民","id":"fbec2e16-0edf-4919-a48d-cbd39da0021f","originalAuthorName":"王建民"},{"authorName":"苗恒云","id":"648723b9-ec32-41a6-922f-46d140282950","originalAuthorName":"苗恒云"}],"doi":"10.3969/j.issn.1673-2812.2006.02.005","fpage":"187","id":"d869a4b5-3ccc-4aa3-9a03-f64f45597426","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"c221a723-2928-45f5-9723-04aec0468908","keyword":"丝素","originalKeyword":"丝素"},{"id":"54285c2f-6e8b-4c17-a118-4e412a9570f6","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"e26ee94a-09d7-4275-9548-bc1696e64068","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"a3401968-c731-452f-8b4b-70423c1f1f4b","keyword":"直径","originalKeyword":"直径"},{"id":"2261aa2f-a462-4d87-8e96-dae890240e94","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clkxygc200602005","title":"静电纺再生丝素纳米纤维:纤维直径分布与力学性能","volume":"24","year":"2006"},{"abstractinfo":"以生物可降解材料聚羟基丁酸酯(PHB)为原料,采用静电纺丝技术制备了PHB纳米纤维,利用扫描电子显微镜观察纤维形态,研究静电纺丝参数对纳米纤维直径的影响.在响应面法的Box-Behnken设计的基础上对PHB静电纺丝纤维直径进行预测,通过回归分析建立二次多元模型.结果表明,PHB溶液浓度、挤出率和浓度二次项对纤维的影响最为显著,其次是毛细管直径和毛细管直径的二次项.模型预测的纤维直径与真实值差异不显著,说明回归模型拟合情况良好,可以有效地预测静电纺PHB纤维的直径.","authors":[{"authorName":"侯成伟","id":"7ee3fa68-8436-4bdb-a501-0f128c6e9002","originalAuthorName":"侯成伟"},{"authorName":"蔡志江","id":"fecbebd8-f0c4-43c5-8498-b634b08988e0","originalAuthorName":"蔡志江"}],"doi":"","fpage":"118","id":"33a433b7-0902-4c7a-8276-3f7c14581538","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"276f1429-6f35-4f44-bd48-980a100ca061","keyword":"聚羟基丁酸酯","originalKeyword":"聚羟基丁酸酯"},{"id":"4f73d904-5ea6-47f4-b1c9-67b7039d99b3","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"4c8acd44-e93c-443f-bcee-46f4b11c5602","keyword":"响应面法","originalKeyword":"响应面法"},{"id":"5c66774b-6a1d-4a9b-a139-86e5c2a52c9b","keyword":"Box-Behnken设计","originalKeyword":"Box-Behnken设计"}],"language":"zh","publisherId":"gfzclkxygc201307029","title":"静电纺丝制备聚羟基脂肪酸酯纳米纤维及其直径预测模型","volume":"29","year":"2013"},{"abstractinfo":"通过Weibull理论探讨了缺陷类型对SiC纤维抗拉强度与直径关系的影响,并通过对国产KD型SiC纤维抗拉强度与直径关系的分析得出了控制纤维力学性能的主要缺陷类型为内部缺陷.根据纤维断口镜面分析得出:表面缺陷控制的纤维力学性能较低,内部缺陷控制的纤维力学性能较高,国产SiC纤维的镜面常数约为2.4 Mpa·m0.5.","authors":[{"authorName":"楚增勇","id":"57f846ce-97b7-4e4b-b92f-be0fd086d73b","originalAuthorName":"楚增勇"},{"authorName":"王应德","id":"81e0f446-6c99-4bfa-b4ec-f84261b9718b","originalAuthorName":"王应德"},{"authorName":"程海峰","id":"c8232fe4-17c7-4a3e-9884-7e8f9d10e33b","originalAuthorName":"程海峰"},{"authorName":"王军","id":"cbd78913-83da-4533-b7b3-42daa40ed39a","originalAuthorName":"王军"},{"authorName":"宋永才","id":"a44bb036-5dc6-429b-ab7a-6bce2b21833a","originalAuthorName":"宋永才"}],"doi":"","fpage":"807","id":"ac62531c-38e2-4d88-8509-ed09fb94b44a","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1069d0af-6182-47ec-9b63-7276c363c75f","keyword":"碳化硅纤维","originalKeyword":"碳化硅纤维"},{"id":"36b0e97a-2b12-4e0e-a1d0-7d75a464e39e","keyword":"缺陷","originalKeyword":"缺陷"},{"id":"8b610281-e315-488d-a51c-51467b3f20ca","keyword":"抗拉强度","originalKeyword":"抗拉强度"},{"id":"9e77b4a5-fe89-442e-9509-1b9349043b3b","keyword":"直径","originalKeyword":"直径"}],"language":"zh","publisherId":"xyjsclygc2008z1212","title":"缺陷类型对SiC纤维抗拉强度与直径关系的影响","volume":"37","year":"2008"},{"abstractinfo":"为了研究静电纺工艺参数对含银PA6纳米纤维直径分布的影响,采用静电纺丝技术,在不同含银量、纺丝液质量分数、纺丝电压、接收距离(C-SD)、喷嘴直径条件下制备出含银PA6纳米纤维膜.利用扫描电镜(SEM)及相关软件分析纳米纤维直径分布及形态,在银溶胶质量分数0.2%~0.4%、纺丝液质量分数10%~16%、纺丝电压12~21kV、接收距离9~18cm、喷嘴直径0.5~1.2mm的实验范围内,纳米纤维的平均直径为70~90nm;纳米纤维直径随银溶胶质量分数的增加而减小,随纺丝液质量分数的增加而增大,随喷嘴直径的增大而增大;电压和接收距离对纳米纤维直径的影响较小.","authors":[{"authorName":"王鸿博","id":"3f49534b-5167-4ef4-96f9-70b2d1d868fa","originalAuthorName":"王鸿博"},{"authorName":"王银利","id":"6157f177-4844-465a-aa2b-f2fc80d89dda","originalAuthorName":"王银利"},{"authorName":"陈艳","id":"a8d6aeaa-7ca2-4f99-aafe-51e212e00be1","originalAuthorName":"陈艳"},{"authorName":"高秋瑾","id":"754a934d-5f33-42cc-b517-992f0f7a2e2e","originalAuthorName":"高秋瑾"},{"authorName":"王曦","id":"ea17b813-6ce1-4a4a-92f1-1d82fd9c0d98","originalAuthorName":"王曦"},{"authorName":"高卫东","id":"cf9bcfa1-a8a8-45a5-b720-1e9302452816","originalAuthorName":"高卫东"}],"doi":"","fpage":"77","id":"03370253-cf5f-432f-8f8f-222a422b36f0","issue":"24","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"856a7200-f0b7-4aec-9d4b-ddba8da7fef5","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"34161233-ec75-4345-b806-e06dd3d3591d","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"1f5227c0-8a59-4cf7-8e98-de4b804457c2","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"67c0ba0f-f0ef-43cb-81d3-b571ef276adc","keyword":"PA6","originalKeyword":"PA6"},{"id":"77ea0ea8-027c-44f5-a42a-f958a4c08ac6","keyword":"银溶胶","originalKeyword":"银溶胶"},{"id":"48970c59-98ef-4eff-9957-ce6a5a3bc7c0","keyword":"直径分布","originalKeyword":"直径分布"}],"language":"zh","publisherId":"cldb200924022","title":"静电纺工艺参数对含银PA6纳米纤维直径的影响","volume":"23","year":"2009"},{"abstractinfo":"针对制备条件对聚芳硫醚砜纳米纤维直径大小的影响,文中设计了正交实验,集中考察了溶液浓度、环境温度、应用电压、喷嘴到收集屏的距离和流量五种因素对静电纺丝制备聚芳硫醚砜纳米纤维的影响,结果表明,溶液浓度对纳米纤维直径的影响最大.可通过调整溶液的浓度及黏度来控制所制备的纳米纤维直径.","authors":[{"authorName":"黄恒梅","id":"69102295-a57c-4bcc-8e54-02f561b97eeb","originalAuthorName":"黄恒梅"},{"authorName":"王孝军","id":"e10aa097-22e9-4005-bc3c-fb9639f50239","originalAuthorName":"王孝军"},{"authorName":"张刚","id":"8e1ffbe6-c59d-4d73-9efe-8c695a5b70d7","originalAuthorName":"张刚"},{"authorName":"赵小川","id":"812468c2-d115-49d7-9fe0-1e6043424499","originalAuthorName":"赵小川"},{"authorName":"王波","id":"54afccc8-3a1f-42da-ac21-036fca13d917","originalAuthorName":"王波"},{"authorName":"杨杰","id":"cef11a77-91c6-4869-97d2-e97a281acf04","originalAuthorName":"杨杰"}],"doi":"","fpage":"171","id":"56a7428d-99d3-40c8-aaf3-a9e5aeae309c","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"224a2bdb-42a6-437b-9e23-23646fc7c020","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"5371dd9c-11fe-4e97-860a-29117a8a4888","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"a0635291-324b-4c31-9592-92d3082e0a09","keyword":"聚芳硫醚砜","originalKeyword":"聚芳硫醚砜"}],"language":"zh","publisherId":"gfzclkxygc200810044","title":"聚芳硫醚砜纳米纤维直径的影响因素及其控制","volume":"24","year":"2008"},{"abstractinfo":"使用静电纺丝的方法,制造出不同直径的纳米纤维薄膜,在低风速下进行空气过滤实验,建立初步分析模型,分析了纤维直径和过滤性能间的关系.实验表明,纳米纤维的直径和过滤效率并不是正比关系,而是在某个纤径尺寸范围存在这一个最优值.对于PM10颗粒,纤维直径分布在400~600nm范围内的纳米纤维薄膜的过滤效果较好.分析模型的建立将促进纳米纤维薄膜空气过滤研究.","authors":[{"authorName":"王晗","id":"8d578076-02c2-46b4-afcc-b9cfe1064060","originalAuthorName":"王晗"},{"authorName":"郑高峰","id":"01584e8f-3a55-40ce-9cf9-518799de66d7","originalAuthorName":"郑高峰"},{"authorName":"孙道恒","id":"df4fd346-4c38-4b52-a132-59adf761276c","originalAuthorName":"孙道恒"}],"doi":"10.3969/j.issn.1007-4252.2008.01.034","fpage":"153","id":"06feb92e-4d9a-434c-911c-fe88ea214f4d","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"483c6e86-cd32-4c2e-9e2b-086f64e55bdb","keyword":"电纺","originalKeyword":"电纺"},{"id":"b1220c80-2c1e-4137-a5ef-2932d7c4fef0","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"e4997ab7-62b5-4cf8-9996-447465720dbc","keyword":"过滤","originalKeyword":"过滤"},{"id":"7878401d-92ac-42a7-bc81-599e4d14963e","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"gnclyqjxb200801034","title":"电纺不同直径纳米纤维薄膜的空气过滤性能","volume":"14","year":"2008"},{"abstractinfo":"研究了静电纺丝工艺参数对聚乳酸(PLA)-茶多酚(TP)复合纳米纤维形貌与直径的影响,借助扫描电子显微镜(SEM)观察在不同纺丝电压、不同接收距离和不同纺丝速度条件下PLA-TP复合纳米纤维的外观形貌,通过专用软件计算纳米纤维的直径.结果表明,在本实验范围内均能得到表面光滑连续的纳米纤维,PLA-TP复合纳米纤维直径为350~800nm;纺丝电压、接收距离和纺丝速度均对纳米纤维直径和形貌有较大影响;较好的纺丝工艺条件为纺丝电压18kV、接收距离17.5cm、纺丝速度0.6~0.8mL/h.","authors":[{"authorName":"费燕娜","id":"824b1c3a-3036-4d02-bb3e-ed030a1bbde9","originalAuthorName":"费燕娜"},{"authorName":"陈艳","id":"6164c357-b86b-43ab-ae47-c2331faa161d","originalAuthorName":"陈艳"},{"authorName":"王银利","id":"6fee13d8-9ff9-4f33-a665-017dee6af662","originalAuthorName":"王银利"},{"authorName":"高卫东","id":"13c5fc51-d2e9-482f-92e4-03f50b7b1d3d","originalAuthorName":"高卫东"},{"authorName":"王鸿博","id":"4a0a0a30-e958-46c8-a7e3-17102021ed29","originalAuthorName":"王鸿博"}],"doi":"","fpage":"77","id":"54c645df-799c-4780-b6cf-b1c695873b20","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a927ff18-3ba1-40f2-bc90-8bbeb6a41715","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"397f172b-6161-4a1b-8501-276117951496","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"93634b86-0b6a-45a5-bfde-a9a8b107e344","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"297c1449-a62c-4bcd-8cf7-1870164b50ae","keyword":"直径分布","originalKeyword":"直径分布"}],"language":"zh","publisherId":"cldb201020023","title":"静电纺工艺参数对聚乳酸-茶多酚复合纳米纤维直径和形貌的影响","volume":"24","year":"2010"}],"totalpage":1417,"totalrecord":14161}