{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用柠檬酸盐法合成了La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF,x=0.05,0.1,0.15和0.2)粉料.TG-DSC分析表明,凝胶在320℃~558℃分解为相应的氧化物.XRD测试表明:产物前躯体在800℃下热处理3h就可制备出具有畸变钙钛矿结构的LSCCF粉料.电导率测试表明,随着烧结温度的升高和Sr2+含量的增加,样品电导率变大,其导电活化能变小.在600℃~800℃范围内,LSCCF样品的电导率为102S/cm~103S/cm,能够满足中温固体氧化物燃料电池阴极材料的要求.LSCCF粉料与Ce0.8Sm0.2O2电解质在800℃下烧结10h后没有新相生成,表明LSCCF粉料与Ce0.8Sm0.2O2电解质具有良好的化学相容性.","authors":[{"authorName":"于洪浩","id":"822eebf9-d673-45bc-9428-5ddf968f82c7","originalAuthorName":"于洪浩"},{"authorName":"高文元","id":"deb75d60-a714-44b6-b6fb-87b0c126e7f1","originalAuthorName":"高文元"},{"authorName":"孙俊才","id":"6e53f84d-7776-4ae0-ab90-6317867b8eb7","originalAuthorName":"孙俊才"}],"doi":"10.3969/j.issn.1004-0277.2005.04.001","fpage":"1","id":"eb84a901-61fe-4916-9a4e-0bad5d893e71","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"ad91d62c-4577-4046-bcbd-768637edd74a","keyword":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ","originalKeyword":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ"},{"id":"78c8512a-5280-49fd-98ca-11426239cc0d","keyword":"柠檬酸盐法","originalKeyword":"柠檬酸盐法"},{"id":"51f58a38-7cd2-4064-9172-46c89d330e97","keyword":"阴极材料","originalKeyword":"阴极材料"},{"id":"8d610748-3df0-4d40-aeb6-db11d254a895","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"xitu200504001","title":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ的柠檬酸盐法制备和性能","volume":"26","year":"2005"},{"abstractinfo":"以碳酸盐和氧化物为原料,采用微波固相烧结法制备了La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(简称:LSCCF,x=0.05,0.10,0.15和0.20)粉料.用XRD和SEM对LSCCF粉料的晶体结构和颗粒形貌进行了研究.结果表明:微波固相反应在1200℃下烧结0.5 h便可以形成密度为5.366 g/cm3,晶粒尺寸小于500 nm钙钛矿结构的粉料.而常规固相反应法在1300℃下烧结7 h只形成了密度为3.426 g/cm3,晶粒尺寸小于2000 nm钙钛矿结构的粉料.电导率测量结果表明:随着烧结温度的升高和Sr2+含量的增加,LSCCF样品的电导率变大,600℃~800℃范围内微波烧结制备的La0.7Sr0.15Ca0.15Co0.9Fe0.1O3-δ样品的电导率最小值为672 S/cm,且高于常规固相烧结制备的相同组成样品的电导率最小值425 S/cm.LSCCF粉料与Ce0.8Sm0.2O2电解质的混合物在800℃下烧结10 h后没有新相生成,表明LSCCF粉料与Ce0.8Sm0.2O2电解质具有良好的化学相容性.","authors":[{"authorName":"高文元","id":"a36b592d-28eb-44ba-b43e-cac84510bd77","originalAuthorName":"高文元"},{"authorName":"孙俊才","id":"b623e543-d1ae-4b74-b392-a99d4e525efe","originalAuthorName":"孙俊才"},{"authorName":"于洪浩","id":"da113224-7f2c-4f29-948c-5dacd8993026","originalAuthorName":"于洪浩"}],"doi":"","fpage":"1738","id":"b4d36d78-bd15-42a1-81b5-d2e39485c15a","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"da930d08-6aaf-4f7d-a9e7-e1c0fa8e9c4d","keyword":"微波固相烧结","originalKeyword":"微波固相烧结"},{"id":"d0012ced-3b19-4fcd-a22e-add10c76338c","keyword":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ","originalKeyword":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ"},{"id":"aeec9e3e-d5cb-4731-a2fa-c0dc4da17809","keyword":"电导率","originalKeyword":"电导率"},{"id":"547eebd3-cad8-4d49-93d3-33d7e3ce70fb","keyword":"化学相容性","originalKeyword":"化学相容性"}],"language":"zh","publisherId":"xyjsclygc200511014","title":"微波固相烧结制备La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ阴极材料及性能表征","volume":"34","year":"2005"},{"abstractinfo":"应用共沉淀法合成了中温固体氧化物燃料电池刚极材料La0.7Sr0.3-xCaxCo0.9Fe01O3-δ(x=0.05,0.10,0.15,0.20)的粉料.采用XRD,SEM和直流四极探针法研究了其晶体结构和电导率随温度变化规律以及其与电解质Ce0.8Sm0.2O2的化学相容性.实验表明:Ca2+和Sr2+双掺杂取代La3+进入晶格后,合成的粉料具有六角晶系钙钛矿结构;随着Ca2+含量x增加,La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ晶胞a轴方向缩短c轴方向拉长,晶胞体积减小:且样品的电导率也在降低.随温度升高到490℃,电导率出现最大值,温度继续升高晶格氧逸出而导致电导率降低.400℃~700℃时,样品的电导率均高于450S/cm.当x=0.10和0.15时,其电导率基本相等且高于760 S/cm.合成的粉料与电解质Ce0.8Sm0.2O2具有良好的化学相容性.","authors":[{"authorName":"高文元","id":"625712e7-c550-478e-8e69-7d6bee0f701e","originalAuthorName":"高文元"},{"authorName":"孙俊才","id":"63d94d0a-9eda-4420-9dd4-fbec0b81047c","originalAuthorName":"孙俊才"},{"authorName":"于洪浩","id":"77c0f3c5-d38f-40e0-87cb-bf36def2c226","originalAuthorName":"于洪浩"},{"authorName":"王守平","id":"a147222f-1d12-4380-b46b-f1e482557684","originalAuthorName":"王守平"}],"doi":"","fpage":"780","id":"ef15408a-3c26-40cc-b9b9-db1c3d6c1a74","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"02b0445b-9ecf-48df-8398-e718f81c1a89","keyword":"中温固体氧化物燃料电池","originalKeyword":"中温固体氧化物燃料电池"},{"id":"5525c9bd-b2a2-4b61-9251-fd8c8204e883","keyword":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ","originalKeyword":"La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ"},{"id":"8025eb44-8054-46b8-a5bd-89dc64f08886","keyword":"刚极材料","originalKeyword":"刚极材料"},{"id":"036e7958-1e14-4d68-8949-84d0c2f0a3a2","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"xyjsclygc2005z2045","title":"碱土金属双掺杂钴铁酸镧的结构和电性能","volume":"34","year":"2005"},{"abstractinfo":"In the compacting process of the La0.7Sr0.3Mn0.9Fe0.1O3 nanosolids under the pressure range of 0.0-4.5 GPa, the apparent pressure-induced crystallite breaking phenomenon in these nanosolids was observed. With increasing pressure up to 4.5 GPa, the average grain size decreases by 46% while the magnetization of nanosolids decrease by 40% and their coercive increases by 35%. This kind of breaking has a close relation to the existence of oxygen deficiency in La0.7Sr0.3Mn0.9Fe0.1O3 nanoparticles. A simple and convenient method for preparing the bulk nanosolids with a large number of clean interfaces has been suggested.","authors":[],"categoryName":"|","doi":"","fpage":"458","id":"2f415993-e634-4b1a-a510-1b9e65a63eab","issue":"6","journal":{"abbrevTitle":"CSB","id":"93e93b22-e268-4660-889e-9c13ce861f8e","issnPpub":"1001-6538","publisherId":"CSB","title":"Chinese Science Bulletin"},"keywords":[{"id":"dd1c149e-e016-43a9-954a-f4c588d9bac7","keyword":"nanosolid;pressure-induced breaking;high pressure;particles","originalKeyword":"nanosolid;pressure-induced breaking;high pressure;particles"}],"language":"en","publisherId":"1001-6538_1998_6_1","title":"Pressure-induced crystallite breaking in La0.7Sr0.3Mn0.9Fe0.1O3 nanosolids","volume":"43","year":"1998"},{"abstractinfo":"采用固相反应法合成了Ln0.7Sr0.3Co0.9Cu0.1O3-δ(Ln=Pr,Nd)钙钛矿氧化物样品,通过XRD和XPS研究样品的物相结构与化学状态,用电导驰豫法研究样品的氧化学扩散系数.实验结果表明,Ln0.7Sr0.3Co0.9Cu0.1O3-δ的氧化学扩散系数随温度的升高而上升;样品Pr0.7Sr0.3Co0.9Cu0.1O3-δ氧扩散系数在800℃时达到3.97×10-5cm2·s-1,是比较理想的中温固体氧化物燃料电池阴极材料.","authors":[{"authorName":"王晓波","id":"8e63c146-21dd-43af-bda1-720375f65e91","originalAuthorName":"王晓波"},{"authorName":"丁铁柱","id":"2763c0b1-fa44-4e4d-bcce-63aa53c91e77","originalAuthorName":"丁铁柱"},{"authorName":"潮洛蒙","id":"689f6fb5-7230-4e93-bd30-b2633497c7d3","originalAuthorName":"潮洛蒙"},{"authorName":"尚涛","id":"7bd27683-4aec-44f9-b3bd-049357694e3e","originalAuthorName":"尚涛"},{"authorName":"朱成军","id":"e9e5f51d-57cd-40d9-965c-237d9eb5a669","originalAuthorName":"朱成军"},{"authorName":"张磊","id":"0851f0aa-852e-46e2-bd20-1aa79853632d","originalAuthorName":"张磊"},{"authorName":"闫祯","id":"f25bbecf-1ba2-4302-840b-c52e233de550","originalAuthorName":"闫祯"}],"doi":"10.3969/j.issn.1004-0277.2011.06.016","fpage":"76","id":"6281b243-2d3c-419b-9d39-f3a0903427b2","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"1184e1a0-cd57-4482-bdae-b32cc6304294","keyword":"Ln0.7Sr0.3 Co0.9Cu0.1O3-δ","originalKeyword":"Ln0.7Sr0.3 Co0.9Cu0.1O3-δ"},{"id":"68dc4d80-8155-4ece-8425-9c4f81fee3a9","keyword":"氧化学扩散系数","originalKeyword":"氧化学扩散系数"},{"id":"3c92cd92-eb50-41b9-bcfd-dc3833bc5d34","keyword":"钙钛矿氧化物","originalKeyword":"钙钛矿氧化物"},{"id":"241f171b-6abe-4327-ba63-804787ddb8e1","keyword":"电导弛豫","originalKeyword":"电导弛豫"}],"language":"zh","publisherId":"xitu201106016","title":"Ln0.7Sr0.3Co0.9Cu0.1O3-δ(Ln=Pr,Nd)氧化学扩散性能的研究","volume":"32","year":"2011"},{"abstractinfo":"采用溶胶低温燃烧法制备了单一组成的La0.3Sr0.7Fe07Cu0.2Mo0.1O3-δ (LSFCM)超细钙钛矿陶瓷粉体.用XRD,SEM以及TA等方法对粉体的物相、形貌、粒度以及导电性能等进行了表征.考察了LSFCM陶瓷粉体对甲烷部分氧化(POM)制备合成气的催化活性与稳定性.结果表明:溶胶燃烧粉末经800℃下煅烧4h可得到平均粒径小于35nm的立方钙钛矿结构LSFCM陶瓷粉体,相对密度为96.7%的LSFCM烧结体在空气气氛600℃温度下电导率达到26.27S·cm-1,在950℃、CH4/O2比为1.5~2.0时,甲烷转化率及一氧化碳与氢气选择性均达到90.0%以上;反应43 h后虽产生少量积炭,但仍能保持钙钛矿结构,表明LSFCM粉体对甲烷部分氧化制合成气反应具有良好的催化活性和稳定性.","authors":[{"authorName":"孟波","id":"d57025f6-3a4e-44bf-89d5-ba63f07c12cc","originalAuthorName":"孟波"},{"authorName":"郝贵增","id":"1e2b56b3-ede4-4a7c-80ea-ae699eab71c4","originalAuthorName":"郝贵增"},{"authorName":"秦敬灿","id":"8c5c9c24-6edf-42f5-8a64-cd588feb1d4a","originalAuthorName":"秦敬灿"},{"authorName":"谭小耀","id":"0008afa7-d8bf-45be-82af-97a2e49689a2","originalAuthorName":"谭小耀"}],"doi":"10.11868/j.issn.1001-4381.2014.11.009","fpage":"50","id":"c227106b-9100-45a7-824f-b3b9c3af9938","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d8ef2d0f-7eb2-418d-ab22-849a2a8aa8c0","keyword":"固体电解质","originalKeyword":"固体电解质"},{"id":"4afed07d-056f-4739-8a2b-88ba5ca803ba","keyword":"La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ","originalKeyword":"La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ"},{"id":"1816f322-21be-45c9-8821-2de401d1b844","keyword":"超细陶瓷粉","originalKeyword":"超细陶瓷粉"},{"id":"6cce889f-1e2a-42cc-8617-62469dae66d7","keyword":"POM","originalKeyword":"POM"},{"id":"c5dd41cf-dc0e-4f7b-b393-54eedeada85f","keyword":"稳定性","originalKeyword":"稳定性"}],"language":"zh","publisherId":"clgc201411009","title":"La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ钙钛矿超细陶瓷粉体制备与催化性能研究","volume":"","year":"2014"},{"abstractinfo":"采用溶胶凝胶法制备了一系列La1-x KxNi1-y MyO3(M=Cu,Co,Mn)钙钛矿复合氧化物催化剂,并利用O2-TPO测试该系列催化剂催化氧化碳烟的性能.通过XRD、H2-TPR、XPS对其进行了表征,结果表明,所制备催化剂均为六方晶系钙钛矿结构.着重考察了A位K掺杂量和B位掺杂元素及其掺杂量对催化碳烟性能的影响.结果表明:当K掺杂量x=0.3时,产生更多氧空位,增加了表面吸附氧数量,同时提高了B位Ni的价态;B位Cu掺杂量y=0.1时,表面吸附氧数量增加,Ni3+含量增大,从而提高了催化剂的活性.La0.7 K0.3 Ni0.9 Cu0.1 O3催化剂与碳烟紧密接触下,Ti、Tm分别为268.1℃和272.8℃.","authors":[{"authorName":"张旺","id":"7b1bd9e8-11cb-4e59-8e17-0ab5496e7343","originalAuthorName":"张旺"},{"authorName":"郭军","id":"b6bed5b2-007e-4937-9a5e-375631c0b25e","originalAuthorName":"郭军"},{"authorName":"尹晓刚","id":"723fa3d1-c804-430e-ad2d-db4350af3524","originalAuthorName":"尹晓刚"},{"authorName":"邬红龙","id":"29aba8e5-963e-4a3a-a4d8-cb9f484c5935","originalAuthorName":"邬红龙"},{"authorName":"陈卓","id":"e0525804-1df3-4a0e-8467-aeac7b3455bc","originalAuthorName":"陈卓"}],"doi":"10.11896/j.issn.1005-023X.2016.06.026","fpage":"111","id":"97dd7522-f6a5-49a2-a44f-316260805077","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0765db27-d3e4-408c-8890-cf371baecde9","keyword":"钙钛矿","originalKeyword":"钙钛矿"},{"id":"71a3bf18-aa47-4a99-b13e-5c311e64a359","keyword":"镧","originalKeyword":"镧"},{"id":"531e8e6e-80e7-40fe-b889-09af32df5388","keyword":"镍","originalKeyword":"镍"},{"id":"ef808b52-df9a-4fc4-8c0a-9c964e3f31ba","keyword":"碳烟","originalKeyword":"碳烟"},{"id":"4ee7e4b8-08be-4b1b-abb3-a1a7abf09731","keyword":"催化","originalKeyword":"催化"}],"language":"zh","publisherId":"cldb201606027","title":"La0.7K0.3Ni0.9Cu0.1O3钙钛矿的制备及催化碳烟性能的研究","volume":"30","year":"2016"},{"abstractinfo":"","authors":[{"authorName":"","id":"e710b95e-12ac-4ae1-ae98-21bfc5d4af48","originalAuthorName":""},{"authorName":"","id":"b775543b-466e-4305-9267-dbbe56ea5739","originalAuthorName":""},{"authorName":"","id":"ae0d9c48-6cfc-4dd9-aabf-6f42a00e43b1","originalAuthorName":""},{"authorName":"","id":"c15b8364-774d-4020-b4c8-887dbfd58e10","originalAuthorName":""},{"authorName":"","id":"c738a3d7-d8b7-4511-949b-52ff92391e94","originalAuthorName":""},{"authorName":"","id":"0a34ddba-d803-439c-81c6-bbffc70626cc","originalAuthorName":""}],"doi":"","fpage":"288","id":"051ca7bf-09f3-4b37-a45c-2d4550fb89b9","issue":"z2","journal":{"abbrevTitle":"XTXBYWB","coverImgSrc":"journal/img/cover/XTXBEN.jpg","id":"66","issnPpub":"1002-0721","publisherId":"XTXBYWB","title":"稀土学报(英文版)"},"keywords":[{"id":"11a7b050-7386-41b2-9a50-9a569b47167c","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgxtxb-e2006z2076","title":"Electrical Properties and Microwave Synthesis of Mixed Rare Earth Oxide Ln0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ","volume":"24","year":"2006"},{"abstractinfo":"","authors":[{"authorName":"","id":"35ac4a7a-7a4a-4f72-af71-209b933bd3e0","originalAuthorName":""},{"authorName":"","id":"8f1c1a60-713a-4ec8-98bb-17efa0542c3b","originalAuthorName":""},{"authorName":"","id":"85c7a372-355d-411d-b64d-c965f3066e3d","originalAuthorName":""},{"authorName":"","id":"f335639f-2936-499e-8774-616e4298371f","originalAuthorName":""},{"authorName":"","id":"9c8cde3e-11b7-4963-9e08-c059da55d649","originalAuthorName":""},{"authorName":"","id":"bcc1a38e-12cb-4d93-b466-e9c7556653fd","originalAuthorName":""}],"doi":"","fpage":"288","id":"13e6c294-d9f6-4b6f-b5b8-7b8d4e60f137","issue":"z2","journal":{"abbrevTitle":"XTXBYWB","coverImgSrc":"journal/img/cover/XTXBEN.jpg","id":"66","issnPpub":"1002-0721","publisherId":"XTXBYWB","title":"稀土学报(英文版)"},"keywords":[{"id":"d8e0c1b9-0a3e-4190-987a-435fdca394e4","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgxtxb-e2006z2076","title":"Electrical Properties and Microwave Synthesis of Mixed Rare Earth Oxide Ln0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ","volume":"24","year":"2006"},{"abstractinfo":"","authors":[{"authorName":"","id":"57d37dff-ab0d-4baa-b5ea-d96450dfd019","originalAuthorName":""},{"authorName":"","id":"fa11a9bc-b3c7-4530-a47d-0e68b4492f48","originalAuthorName":""},{"authorName":"","id":"8ad913d6-f36d-4e85-9f7e-dba0f20f4c16","originalAuthorName":""},{"authorName":"","id":"185b5782-ea30-4633-aba1-97229dc1fe99","originalAuthorName":""},{"authorName":"","id":"51442908-03a1-43c8-bd76-06e48838a871","originalAuthorName":""},{"authorName":"","id":"eeecbb21-6562-4fe8-b16d-a50861425880","originalAuthorName":""}],"doi":"","fpage":"288","id":"885da9c0-dd9a-4b8a-9a5b-1aafe157e590","issue":"z2","journal":{"abbrevTitle":"XTXBYWB","coverImgSrc":"journal/img/cover/XTXBEN.jpg","id":"66","issnPpub":"1002-0721","publisherId":"XTXBYWB","title":"稀土学报(英文版)"},"keywords":[{"id":"3504341c-77a9-4fe5-b860-f9b3944dcdb0","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgxtxb-e2006z2076","title":"Electrical Properties and Microwave Synthesis of Mixed Rare Earth Oxide Ln0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ","volume":"24","year":"2006"}],"totalpage":8183,"totalrecord":81828}