{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"由于可以从非石油资源如煤、天然气、生物质等出发制备低碳烯烃,分子筛催化甲醇制烯烃(MTO)反应在学术界和工业界引起了广泛的研究兴趣. H-SAPO-34是目前表现优异性能的分子筛催化剂之一,其双烯(乙烯+丙烯)的选择性在80%以上,已经实现了工业化应用.为了提升MTO反应的选择性,以及调控乙烯丙烯的选择性之比,非常有必要从反应机理出发来优化设计新的催化剂.然而,由于MTO催化反应产物复杂多样,对MTO反应机理的认识还存在很大的争议.目前基本能够接受的是MTO催化反应沿着烃池机理进行.在此反应机理中,无机分子筛和有机烃池活性中心形成共催化剂,甲醇进攻有机活性中心生成烷基链,此烷基链断裂得到烯烃产物.目前提出的烃池活性中心主要包括多甲基苯和烯烃自身,它们分别沿着各自的循环反应网络(芳烃循环和烯烃循环)生成烯烃产物.有文献指出在H-ZSM-5分子筛中芳烃循环主要生成乙烯,而烯烃循环主要生成丙烯等产物.因此,系统研究分子筛结构对两条循环网络相对贡献程度的影响规律,从而阐述分子筛结构和MTO催化性能之间的关系具有重要的意义. H-SAPO-18是一类结构上与H-SAPO-34相类似的分子筛,其笼由八元环孔道互联.实验研究指出,其也具有优异的MTO催化性能.在本工作中,我们利用包含范德华相互作用校正的交换相关泛函(BEEF-vdW),系统研究了H-SAPO-18分子筛中的芳烃循环反应机理.所有计算用VASP程序包完成, H-SAPO-18用48T周期性结构模型表示.利用静态吸附和相互转化的自由能变化情况,我们首先确认了反应条件下H-SAPO-18中最稳定的多甲基苯的结构.计算结果指出,1,2,4,5-四甲基苯的吸附能最强,而六甲基苯是主要存在的多甲基苯组分.多甲基苯在分子筛孔道内的稳定性主要由两个相反的作用共同影响:范德华相互作用引起的吸引,以及分子筛孔道结构引起的排斥.在芳烃循环路线中,乙基侧链的增长是反应的关键基元步.吉布斯自由能分析指出芳烃循环路线中,在反应温度673 K下H-SAPO-18中的六甲基苯并不比五甲基苯,四甲基苯的活性高,这与H-SAPO-34分子筛中的结果相一致. H-SAPO-18中的四甲基苯、五甲基苯和六甲基苯的总吉布斯自由能垒分别是208,215,239 kJ/mol.六甲基苯循环路线所表现出的高反应能垒的一个原因,是由于分子筛几何限域效应引起的熵增加所致.通过与烯烃循环路线的动力学进行比较,本文芳烃循环路线动力学的工作可以为MTO催化反应机理的研究提供一些启示.","authors":[{"authorName":"王传明","id":"486268d8-7f76-473d-a369-4b7951e8451a","originalAuthorName":"王传明"},{"authorName":"王仰东","id":"bdf4c0f1-11a3-4756-b629-1296d8132f00","originalAuthorName":"王仰东"},{"authorName":"刘红星","id":"6147fe52-27d7-46c5-898d-fc9158ab2138","originalAuthorName":"刘红星"},{"authorName":"杨光","id":"a124aaee-40ee-4ff7-93f6-3c890cc1921c","originalAuthorName":"杨光"},{"authorName":"杜钰珏","id":"3ed6dce3-c2f6-4043-8f71-fb2a3061ba57","originalAuthorName":"杜钰珏"},{"authorName":"谢在库","id":"ee52a17e-15ae-4c1b-9abf-4ee107c45e31","originalAuthorName":"谢在库"}],"doi":"10.1016/S1872-2067(15)60891-9","fpage":"1573","id":"529b4e48-e285-4c43-8220-c120cc25c3d5","issue":"9","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"1f6a0cf7-c1a7-4224-ab0a-4709e8a3c718","keyword":"甲醇制烯烃","originalKeyword":"甲醇制烯烃"},{"id":"919cfc41-0261-4dd2-837b-fa309eae3a29","keyword":"分子筛催化","originalKeyword":"分子筛催化"},{"id":"7a33a2af-e6c0-4924-b7dd-86bc4b85c312","keyword":"密度泛函理论","originalKeyword":"密度泛函理论"},{"id":"619f73eb-33d3-4da1-94f1-d4740aac01e0","keyword":"H-SAPO-18分子筛","originalKeyword":"H-SAPO-18分子筛"},{"id":"3bea1799-00a9-4c9a-8231-9f10a774b50d","keyword":"反应机理","originalKeyword":"反应机理"},{"id":"26bc5e5e-f134-4d2d-bd3e-7f23646b8532","keyword":"芳烃循环路线","originalKeyword":"芳烃循环路线"}],"language":"zh","publisherId":"cuihuaxb201509018","title":"H-SAPO-18催化甲醇制烯烃反应的芳烃烃池机理:基于范德华校正的密度泛函理论研究","volume":"","year":"2015"},{"abstractinfo":"系统地归纳总结了最近几年引起人们广泛关注的复合分子筛的研究进展,包括微孔-微孔复合分子筛、微孔-介孔复合分子筛、微孔-大孔复合分子筛及微孔-介孔-大孔复合分子筛的合成和应用近况.并对复合分子筛的发展前景进行了展望.","authors":[{"authorName":"徐玲","id":"bbc0f4a3-c5fc-4a08-a62b-2968c2028d0f","originalAuthorName":"徐玲"},{"authorName":"徐海燕","id":"887531dd-9409-4e1c-aaa3-d8cde43ed705","originalAuthorName":"徐海燕"},{"authorName":"吴通好","id":"4f92dc63-531c-479c-b5ec-e53ec3972c16","originalAuthorName":"吴通好"},{"authorName":"吴淑杰","id":"0e14ca8a-4a22-424d-a3c1-c167be98dbd0","originalAuthorName":"吴淑杰"},{"authorName":"阚秋斌","id":"54dd9b4c-c051-4d02-92c9-db8266bd0e29","originalAuthorName":"阚秋斌"}],"doi":"","fpage":"1149","id":"30df4001-0f9c-41e5-8b1a-aafd2013ccd8","issue":"12","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"10de1bd7-9d8d-417c-b92f-b84743ef2750","keyword":"复合分子筛","originalKeyword":"复合分子筛"},{"id":"3b3725c9-7b5a-4c11-a77b-bb426fbda161","keyword":"合成","originalKeyword":"合成"},{"id":"7707e0ae-80ea-4b1a-9de2-3b5d205cb6a5","keyword":"应用","originalKeyword":"应用"},{"id":"14e2e1cc-fb4d-41a8-bf72-32244999c801","keyword":"催化材料","originalKeyword":"催化材料"}],"language":"zh","publisherId":"cuihuaxb200612022","title":"新型复合分子筛的合成和催化应用","volume":"27","year":"2006"},{"abstractinfo":"从工业催化的角度思考和探讨了分子筛催化剂合成、催化及应用方面存在的一些问题与挑战,并从沸石分子筛的高效催化、新结构分子筛合成与催化应用、沸石分子筛的经济合成、分子筛在绿色环保领域的新应用等几个方面,综述了国内外相关的最新研究进展,探讨了分子筛催化剂未来的发展方向.旨在引发人们对分子筛催化未来向经济、可控、高效催化、绿色环保和新应用等方面发展的思考与探索.","authors":[{"authorName":"刘志成","id":"0087dad8-ad27-4830-8594-4349c89f422d","originalAuthorName":"刘志成"},{"authorName":"王仰东","id":"ce49c162-b563-472e-8749-f8434c90c823","originalAuthorName":"王仰东"},{"authorName":"谢在库","id":"567c7fba-cc4f-4227-8595-6cfed30a8510","originalAuthorName":"谢在库"}],"doi":"10.1016/S1872-2067(10)60299-9","fpage":"22","id":"79ae0a84-89ee-4bbc-9555-d79d9c0732a4","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"76122e0a-aaec-475c-b7f1-65ecf426991d","keyword":"沸石分子筛","originalKeyword":"沸石分子筛"},{"id":"a6e38e4e-0e82-41fe-8e54-1a65b3598661","keyword":"工业催化剂","originalKeyword":"工业催化剂"},{"id":"5d799bfe-4274-4ffc-8bf2-8fe8c00c3b81","keyword":"石油化工","originalKeyword":"石油化工"},{"id":"e8994266-bd00-468c-9b93-023dc58fdac4","keyword":"未来发展","originalKeyword":"未来发展"},{"id":"43800490-3cb9-4cfe-acb0-b61e16a0a5c9","keyword":"高效催化","originalKeyword":"高效催化"},{"id":"b3442303-fe3f-470c-bccd-2d5fb08e6781","keyword":"经济合成","originalKeyword":"经济合成"},{"id":"42df8218-18d3-4e2d-858e-1aa576e9515c","keyword":"绿色环保","originalKeyword":"绿色环保"}],"language":"zh","publisherId":"cuihuaxb201201004","title":"从工业催化角度看分子筛催化剂未来发展的若干思考","volume":"33","year":"2012"},{"abstractinfo":"采用连续固定床反应器,考察了几种具有不同酸性和孔道尺寸的分子筛催化剂上丁烯-2齐聚反应的性能,并与固体磷酸(SPA)催化剂进行了对比. 结果表明,分子筛催化剂的酸性和孔道尺寸是影响丁烯-2齐聚反应活性和选择性的重要因素. 具有八元环孔道的分子筛的扩散阻力大,反应活性很低; 十二元环分子筛的孔道降低了扩散阻力,有利于提高催化剂的低温活性和C=9+选择性; 十元环分子筛的孔道尺寸和强酸中心可以提高催化剂的活性,促进C=9+生成. SPA催化剂上C=9+选择性低于30%, 而具有强酸中心的十元环ZSM-5和ZSM-22分子筛,以及十二元环β分子筛催化剂上可高达50%以上,这说明分子筛催化剂具有更好的齐聚催化性能.","authors":[{"authorName":"刘姝","id":"202041db-4f3f-40f7-bcae-a45ce575e435","originalAuthorName":"刘姝"},{"authorName":"王立刚","id":"82ccea4a-0837-4643-8066-57855fa9be64","originalAuthorName":"王立刚"},{"authorName":"刘宏超","id":"56c89661-4bca-4ef6-bfb1-8ba388e5f60e","originalAuthorName":"刘宏超"},{"authorName":"孙新德","id":"177bcb71-4eb7-4709-ae2b-e8b0d2d0ebd3","originalAuthorName":"孙新德"},{"authorName":"刘中民","id":"b297b4f2-4935-4063-8806-f35b7408c68d","originalAuthorName":"刘中民"}],"doi":"","fpage":"919","id":"982fe7fc-3d20-42b0-8c30-1f74b420069f","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"12eecd70-36c7-43f7-926e-a059d8f06794","keyword":"分子筛催化剂","originalKeyword":"分子筛催化剂"},{"id":"51c1ae31-25e0-4362-88ac-04eb53ded194","keyword":"孔道尺寸","originalKeyword":"孔道尺寸"},{"id":"cd227b83-4bc9-4357-9bf4-6707b21d76a0","keyword":"酸性","originalKeyword":"酸性"},{"id":"4af66791-a59b-4888-843c-2baf01cb9e0e","keyword":"丁烯","originalKeyword":"丁烯"},{"id":"8571f813-c8f9-41d6-9096-be16f0458ec4","keyword":"齐聚","originalKeyword":"齐聚"},{"id":"bc15b06c-fe35-48ff-bc9a-8d484edb2a85","keyword":"高碳烯烃","originalKeyword":"高碳烯烃"}],"language":"zh","publisherId":"cuihuaxb200710017","title":"几种分子筛催化剂对丁烯-2齐聚反应的催化性能","volume":"28","year":"2007"},{"abstractinfo":"在高硅/铝比的酸性沸石分子筛HY上实现了Knoevenagel缩合反应. Brnsted酸和Lewis酸均可催化Knoevenagel缩合反应. 考察了羰基化合物和活泼亚甲基化合物的反应活性顺序. 结果表明,羰基化合物的羰基极化程度越高,反应越容易进行; 不同于碱催化时的Knoevenagel缩合反应,活泼亚甲基化合物的活泼氢的酸性并不是影响其反应活性的重要因素.","authors":[{"authorName":"左伯军","id":"ddb509cf-98b7-4f8e-84be-307480970ba2","originalAuthorName":"左伯军"},{"authorName":"王琪珑","id":"e6834b6a-ccdb-4f7d-be6f-db2b999f5236","originalAuthorName":"王琪珑"},{"authorName":"王远","id":"303f05e0-5b3d-4de4-89e0-d2072b8fa94c","originalAuthorName":"王远"},{"authorName":"马玉道","id":"24cd9f9a-43f6-4913-9c14-6bad340d7535","originalAuthorName":"马玉道"}],"doi":"","fpage":"555","id":"bb9f358e-119c-4591-a4b2-0ca2e7bd077b","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e83888f3-9483-4511-aaae-253705a7c42c","keyword":"酸性沸石分子筛","originalKeyword":"酸性沸石分子筛"},{"id":"1fa0d1d4-4099-4c69-ae6a-e9b23683ac9c","keyword":"醛","originalKeyword":"醛"},{"id":"8efa775c-e6bb-446a-920a-c0c3a08068fc","keyword":"酮","originalKeyword":"酮"},{"id":"0970afbb-faf7-4d16-8e4d-4607839a7302","keyword":"亚甲基化合物","originalKeyword":"亚甲基化合物"},{"id":"9ed8ab74-17a7-4669-ab23-553df3058c58","keyword":"Knoevenagel缩合反应","originalKeyword":"Knoevenagel缩合反应"}],"language":"zh","publisherId":"cuihuaxb200206018","title":"酸性沸石分子筛催化Knoevenagel缩合反应","volume":"23","year":"2002"},{"abstractinfo":"通过对HZSM-5,HZRP-1和Hβ三种类型分子筛催化剂上合成甲基叔丁基醚的活性测定和结构表征,初步考察了分子筛孔结构对催化活性的影响.在此基础上,对适宜孔结构的分子筛进行了水热改性,考察了改性条件对分子筛催化剂的性质及其合成甲基叔丁基醚反应催化活性的影响,得到了催化活性较好的分子筛催化剂.","authors":[{"authorName":"李永红","id":"37e2d877-efc6-4e5c-a1ca-d1673730d759","originalAuthorName":"李永红"},{"authorName":"王莅","id":"ff65dc27-4f02-4937-85a4-0802b82abd8d","originalAuthorName":"王莅"},{"authorName":"余少兵","id":"aa33aefd-de69-43d7-8277-f50716c0f6b6","originalAuthorName":"余少兵"},{"authorName":"李振花","id":"4e1695a8-e61f-484b-836b-77f489c16e03","originalAuthorName":"李振花"},{"authorName":"韩森","id":"564b6601-98b0-4a13-9661-c32dcf0f2a6f","originalAuthorName":"韩森"},{"authorName":"陈洪钫","id":"004d5f9c-d9ea-4180-9e87-856f6ca6b717","originalAuthorName":"陈洪钫"},{"authorName":"闵恩泽","id":"fb139920-3cda-46cb-8978-6d0a9c915071","originalAuthorName":"闵恩泽"}],"doi":"","fpage":"323","id":"d34553a6-f7ed-4e84-9159-5371bad1575f","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"38089778-6f72-4c68-9abc-cf090f397557","keyword":"甲基叔丁基醚","originalKeyword":"甲基叔丁基醚"},{"id":"8fe0fabc-1ed3-4004-bf87-9c716c23a7b2","keyword":"分子筛催化剂","originalKeyword":"分子筛催化剂"},{"id":"efb84184-71f4-4650-a5f6-14aad02fceb8","keyword":"改性","originalKeyword":"改性"},{"id":"883bd8c0-8094-4b28-a588-e56fddcffb5b","keyword":"催化活性","originalKeyword":"催化活性"}],"language":"zh","publisherId":"cuihuaxb200004010","title":"合成甲基叔丁基醚的分子筛催化剂研究","volume":"21","year":"2000"},{"abstractinfo":"钼基分子筛催化剂,由于不同分子筛的孔道大小及孔道形状不同,对甲烷芳构化反应表现出不同的催化性能.具有8元环孔道结构的小孔ERS-7分子筛没有催化活性,说明甲烷的芳构化反应离不开分子筛孔道的择形作用,较小的孔道中不能生成苯等芳烃.具有10元环孔道结构的ZSM-5,ZSM-11和ZRP-1三种分子筛具有较好的催化性能,但由于其孔道大小及孔道形状的差别在催化行为上表现出一定的差异.具有10元环和12元环孔道结构的MCM-22分子筛,尤其对苯等轻芳烃而言,催化性能最佳.具有12元环孔道结构的JQX-1以及中孔分子筛SBA-15,虽然具有一定的催化性能,但活性较低. 研究结果表明,孔道大小与苯分子动态直径相近或孔道稍大的分子筛是催化甲烷芳构化反应的良好载体,孔道过大或过小都不利于苯和萘等芳烃的生成.","authors":[{"authorName":"舒玉瑛","id":"935a413f-1636-4fe5-b5c9-78f67380a316","originalAuthorName":"舒玉瑛"},{"authorName":"马丁","id":"595fdfe1-0d33-4975-9f50-62e5822b1a0a","originalAuthorName":"马丁"},{"authorName":"徐龙伢","id":"422764f1-87c0-4871-98bd-3df379260313","originalAuthorName":"徐龙伢"},{"authorName":"包信和","id":"1d67a4ff-777b-41df-a3ce-04131dd8d55f","originalAuthorName":"包信和"},{"authorName":"徐奕德","id":"38da85ca-b18e-4f57-866c-09de6fa0d8fb","originalAuthorName":"徐奕德"}],"doi":"","fpage":"24","id":"75e314e7-141c-415d-8eda-e08e0f0f4bc8","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"556c961d-bf3c-402c-9b3f-19462aa86ebe","keyword":"钼","originalKeyword":"钼"},{"id":"a5cc6cc2-677c-49a8-b3f7-843b3e6cc540","keyword":"分子筛","originalKeyword":"分子筛"},{"id":"0ae6f543-bdf8-438f-bc2a-026a4abb5caa","keyword":"环大小","originalKeyword":"环大小"},{"id":"d69fab19-b853-49eb-84d5-6ecf83e2e45d","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"64a49b82-ec42-45d2-82ed-cd2b47d4a068","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"6a9b9aa7-441e-4091-867d-2396a97ca7d7","keyword":"芳构化","originalKeyword":"芳构化"}],"language":"zh","publisherId":"cuihuaxb200201006","title":"不同环大小分子筛对钼基分子筛催化剂上甲烷无氧芳构化反应的影响","volume":"23","year":"2002"},{"abstractinfo":"研究了液相、加压条件下,不同沸石分子筛对低温合成乙基叔丁基醚(ETBE)的催化性能. 发现Hβ沸石的催化活性与A-35树脂催化剂的相当,远远高于其他沸石分子筛催化剂.醇/烯比对Hβ分子筛催化剂及A-35催化剂上ETBE的合成影响比较大. 但是Hβ沸石分子筛上ETBE的选择性基本不受醇/烯比的影响,而醇/烯比对树脂催化剂上ETBE的选择性影响相对较大. 加入粘合剂后,Hβ沸石分子筛催化剂的活性有所下降,但是加入致孔剂后,其活性有所提高. 加入5%聚乙二醇4000后,在温度高于65 ℃时,Hβ沸石的催化活性已经与A-35的相当,在某些温度下,甚至高于A-35树脂催化剂的活性. ","authors":[{"authorName":"李自运","id":"685ea580-ca78-4420-8be3-69baa1208192","originalAuthorName":"李自运"},{"authorName":"朱岩","id":"ba3a18f2-cfd9-4461-a60a-620a8af93c58","originalAuthorName":"朱岩"},{"authorName":"项寿鹤","id":"c37ebe99-0662-489f-abaf-78dd4b4d6f73","originalAuthorName":"项寿鹤"}],"doi":"","fpage":"294","id":"f7eb726a-e82f-40a4-be2a-04101c3d3e0d","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"3eac360c-368c-495b-8325-31846e7be3c4","keyword":"乙基叔丁基醚","originalKeyword":"乙基叔丁基醚"},{"id":"6154e447-527d-4f7e-9981-6f7feea6bde8","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"df85b083-edff-4120-babd-b6381800d7d1","keyword":"异丁烯","originalKeyword":"异丁烯"},{"id":"d7aa6d8f-e042-41c0-802d-f3c811fa67ca","keyword":"HY分子筛","originalKeyword":"HY分子筛"},{"id":"9e5e649b-9aa2-40c1-9a30-34d92896132f","keyword":"HZSM-5分子筛","originalKeyword":"HZSM-5分子筛"},{"id":"2529d473-511f-4e56-9167-06cd89cb944f","keyword":"Hβ分子筛","originalKeyword":"Hβ分子筛"},{"id":"605fa589-7db3-4ffd-b63c-3f69e826f036","keyword":"A-35树脂","originalKeyword":"A-35树脂"},{"id":"46dfcceb-ac30-48e0-b603-eb022262ffc4","keyword":"HMCM-22分子筛","originalKeyword":"HMCM-22分子筛"},{"id":"224d09e2-40c3-4890-8eae-be16747fa22c","keyword":"粘合剂","originalKeyword":"粘合剂"},{"id":"5f2ee30d-9bbc-48ca-9790-b59078b9a785","keyword":"致孔剂","originalKeyword":"致孔剂"}],"language":"zh","publisherId":"cuihuaxb200304013","title":"不同沸石分子筛对乙基叔丁基醚合成反应的催化性能","volume":"24","year":"2003"},{"abstractinfo":"用XRD,N2吸附,NH3-TPD和Py-IR等手段对REHY分子筛进行了表征,并通过多晶XRD法测定了稀土离子在Y分子筛骨架外的分布. 结果表明,在含水条件下,定位于Y型分子筛β笼SⅠ′位的RE3+与骨架氧及定位于SⅡ′位的H2O配位,稳定了分子筛的骨架,减少了分子筛酸性中的最强酸部分;定位的RE3+通过极化定位的配位水,增加了分子筛的中强酸,减缓了RE3+取代H+所引起的酸量下降. 从结构测定可推测出,在FCC催化剂中Y型分子筛上RE3+的最佳量应为每个晶胞含11个稀土离子,并完全定位于β笼的SⅠ′位.","authors":[{"authorName":"李斌","id":"18919631-8063-4851-97d7-61fd5cdf0304","originalAuthorName":"李斌"},{"authorName":"李士杰","id":"ff0192c4-7256-41d9-85c1-fbb6101146f9","originalAuthorName":"李士杰"},{"authorName":"李能","id":"154b7182-a358-4347-83db-997df959a210","originalAuthorName":"李能"},{"authorName":"刘从华","id":"4fa515eb-3679-4b26-8844-5471e729fb0a","originalAuthorName":"刘从华"},{"authorName":"高雄厚","id":"9284a070-71b4-4388-9382-175664167286","originalAuthorName":"高雄厚"},{"authorName":"庞新梅","id":"d46eb979-e862-472b-a00a-2d204c67ce40","originalAuthorName":"庞新梅"}],"doi":"","fpage":"301","id":"75e51b4d-9815-484e-b80a-c0d134314c4f","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"2657e3e5-7f05-42de-9006-5f1af11cc51b","keyword":"流化催化裂化催化剂","originalKeyword":"流化催化裂化催化剂"},{"id":"5defb2d2-2fbc-4066-aab4-3b157532eb03","keyword":"稀土","originalKeyword":"稀土"},{"id":"1d2d70cb-1d3c-4bda-b52b-e8e437b1daa1","keyword":"HY分子筛","originalKeyword":"HY分子筛"},{"id":"d4d65ea2-512f-46a4-96be-12917549a914","keyword":"酸性","originalKeyword":"酸性"},{"id":"cf5c1a68-4e95-4b75-ab98-1c668b3953c6","keyword":"结构","originalKeyword":"结构"},{"id":"744478bc-3bca-402d-b260-87361759e4ea","keyword":"稀土离子位置","originalKeyword":"稀土离子位置"}],"language":"zh","publisherId":"cuihuaxb200504011","title":"FCC催化剂中REHY分子筛的结构与酸性","volume":"26","year":"2005"},{"abstractinfo":"采用简单、易重现的两步后合成法成功制备了Ce-Beta分子筛。制备过程中, H-Beta分子筛首先经过脱铝处理得到Si-Beta分子筛,然后再以异丙醇铈为前驱体,通过干法浸渍的途径向Si-Beta分子筛引入Ce (IV)。利用XRD, FT-IR, UV-Vis和1H MAS NMR等对其结构进行了表征,结果表明, Ce(IV)物种以四配位的形式成功引入Beta分子筛的骨架, Ce原子进入分子筛骨架的机理通过DRIFT光谱得以证实。通过环氧化合物水合制备1,2-二醇反应对所制的Ce-Beta催化剂进行了催化性能评价。","authors":[{"authorName":"唐波","id":"c35e9da5-5fe0-4cc1-b26a-7034700d2a39","originalAuthorName":"唐波"},{"authorName":"戴卫理","id":"b48303b0-e7ff-4ca8-ab40-94a527d750ef","originalAuthorName":"戴卫理"},{"authorName":"孙晓明","id":"19cdd29f-164f-4f92-9aff-614e96e9ab01","originalAuthorName":"孙晓明"},{"authorName":"武光军","id":"cd97b84a-0da7-4ce3-afae-35fbeed01ed9","originalAuthorName":"武光军"},{"authorName":"李兰冬","id":"4d76f6f6-11df-4285-b70f-f4d6c5ec7e5a","originalAuthorName":"李兰冬"},{"authorName":"关乃佳","id":"9409a87d-877f-4558-81ff-4d3adb337bf4","originalAuthorName":"关乃佳"},{"authorName":"MichaelHunger","id":"2416def2-03b2-4ac7-8afd-b387c7e30c25","originalAuthorName":"MichaelHunger"}],"doi":"10.1016/S1872-2067(14)60277-1|","fpage":"801","id":"099cdab8-1c4c-4c5c-abd7-7062ac8a957e","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"fedc24bc-26f2-4abc-92ce-a9debb2cdd4e","keyword":"Ce-Beta分子筛","originalKeyword":"Ce-Beta分子筛"},{"id":"856ec8e8-e32c-41a5-8f08-c905f593c09a","keyword":"后合成","originalKeyword":"后合成"},{"id":"548d4ee7-b805-4a58-9653-b51d3db76f4e","keyword":"脱铝","originalKeyword":"脱铝"},{"id":"d3672b42-de12-4de8-8ae3-691c26c53fa6","keyword":"开环水合","originalKeyword":"开环水合"},{"id":"d32e9d69-bf80-4a96-ae1d-169b1214a285","keyword":"环氧","originalKeyword":"环氧"}],"language":"zh","publisherId":"cuihuaxb201506004","title":"Ce-Beta分子筛的制备及其催化性能","volume":"","year":"2015"}],"totalpage":2354,"totalrecord":23537}