{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以初步纯化的微生物转谷氨酰胺酶(MTGase)催化合成壳寡糖-水解麦醇溶肽共聚物,研究最佳合成条件并对共聚物进行了表征.结果表明,合成共聚物的最佳条件是:壳寡糖/水解麦醇溶肽质量比为1∶40,在pH值6.00 ~6.50、50℃下搅拌反应50 min,共聚物的生成率达到60% ~ 70%.红外光谱分析显示,与壳寡糖相比,由于引入的吸电子基团产生诱导效应,共聚物酰胺-C-O基的伸展振动峰向高波数位移动且吸收强度加强.由DTA分析可知,共聚物在60.91℃处失水,387.55℃处熔融,665.25℃处开始彻底分解,与壳寡糖和麦醇溶肽的差异明显.XRD分析可知,共聚物的结晶度显著降低,晶胞数据不同于壳寡糖,表明其不易结晶.HPLC分析表明,共聚物主要由两个组分构成,占共聚物总量的80.6%,其相对分子质量分别为66069和27285.共聚物不溶于水及多种有机溶剂,微溶于1% NaOH,溶解度为0.184 mg/100 g.熔程为162 ~163℃.","authors":[{"authorName":"江文","id":"5aabab20-d03a-4029-887f-c585c28d7d6f","originalAuthorName":"江文"},{"authorName":"周桢","id":"0c9ce48e-f70c-4a8a-bbea-cc12132d4053","originalAuthorName":"周桢"},{"authorName":"石业新","id":"05a77080-f7d3-40b6-a351-adef6bfd4a82","originalAuthorName":"石业新"},{"authorName":"陶仁友","id":"5c1fb4b5-342c-4e62-b6b2-09a8eef0c127","originalAuthorName":"陶仁友"},{"authorName":"张桂罗","id":"66162a68-2270-48b9-a18b-dc944df14638","originalAuthorName":"张桂罗"},{"authorName":"周小华","id":"0d88fd1c-10e1-47be-a3a0-3e56eeefd186","originalAuthorName":"周小华"},{"authorName":"王丹","id":"124f0119-7373-47e4-97bd-33080f4b7a34","originalAuthorName":"王丹"}],"doi":"10.11944/j.issn.1000-0518.2016.03.150226","fpage":"284","id":"65e34c6c-43da-4d52-a6d5-9d9030c2d0e7","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"a1f1e19f-8fc6-4e9a-9944-7a7b3f6d888f","keyword":"微生物转谷氨酰胺酶","originalKeyword":"微生物转谷氨酰胺酶"},{"id":"f6b743ea-0eb7-4f5f-ae30-261aafb6d9f2","keyword":"壳寡糖","originalKeyword":"壳寡糖"},{"id":"256ed5e6-5f53-4714-bcd1-0b669cf0c551","keyword":"水解麦醇溶肽","originalKeyword":"水解麦醇溶肽"},{"id":"5493976a-f6df-4274-ba05-48f76e95defa","keyword":"共聚物","originalKeyword":"共聚物"}],"language":"zh","publisherId":"yyhx201603004","title":"壳寡糖-水解麦醇溶肽共聚物的制备和表征","volume":"33","year":"2016"},{"abstractinfo":"采用金属与醇直接反应制得金属醇盐,经水解、干燥、焙烧,最终制得LaAlO3粉体.实验证明,金属镧、铝与醇直接反应可制得镧铝双金属醇盐.经过TG、XRD、SEM分析可得知水解过程、相转变、晶粒大小等信息.油酸的加入可降低醇盐活性,可控制水解反应速度;在TG曲线上,到600℃左右,湿凝胶几乎停止失去结构水,凝胶趋于转化完全;XRD表明,在900℃条件下焙烧,可得到LaAlO3,且晶型发育较完好,且为立方相;焙烧温度到1000℃时,晶粒发育完善;由谢乐公式计算,晶粒尺寸为80nm左右;经SEM观察,粉体颗粒呈规则的立方体.","authors":[{"authorName":"王修慧","id":"237fae38-2514-4989-b5dc-02640c34e2d8","originalAuthorName":"王修慧"},{"authorName":"吴晓琳","id":"047d45b6-1107-4d2d-8ddd-254331eaf2e8","originalAuthorName":"吴晓琳"},{"authorName":"翟玉春","id":"a2b1ebcc-8310-4e54-99b5-dfa7f008e59c","originalAuthorName":"翟玉春"},{"authorName":"高宏","id":"0cae80cc-7e01-4783-bdca-dcd7797a4319","originalAuthorName":"高宏"}],"doi":"","fpage":"62","id":"fa85db06-8586-4326-a946-8b2fba3cb9df","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1b2101f5-7ef5-4acd-8c6c-67ea7c6c3a0f","keyword":"醇盐水解","originalKeyword":"醇盐水解"},{"id":"fe9447b3-5ec6-4e28-b76d-36848f9195b8","keyword":"铝酸镧","originalKeyword":"铝酸镧"},{"id":"34ec7f67-07dd-477b-8738-f823a12cc3eb","keyword":"粉体","originalKeyword":"粉体"}],"language":"zh","publisherId":"xyjsclygc2007z1019","title":"醇盐水解法制备铝酸镧粉体","volume":"36","year":"2007"},{"abstractinfo":"以正硅酸乙酯(TEOS)为前驱体,采用溶胶-凝胶法原位制备了SiO2/胶原水解物-聚乙烯醇杂化复合膜(SiO2/CH-PVA杂化膜).通过溶胀、热重(TG)、红外光谱(FTIR)、扫描电镜(SEM)和拉伸实验,考察了SiO2对杂化膜性能的影响.结果表明,SiO2的引入减小了膜的平衡溶胀度,减缓了膜的溶胀速率,有效地抑制了胶原水解物的溶解.红外光谱中Si-O-Si、Si-C键的吸收峰表明形成了交联的有机聚合物/无机杂化体系,SiO2的引入显著地提高了杂化膜的热稳定性和力学性能,当SiO2,质量分数由0%增加到20%,杂化膜的抗张强度由18 MPa.提高到25 MPa,断裂伸长率由510%提高到780%.","authors":[{"authorName":"刘捷","id":"b1226bf1-bf74-4820-9f01-91589a9810db","originalAuthorName":"刘捷"},{"authorName":"聂磊","id":"45f7928d-9482-4b4a-9e8f-9d2049e4fe12","originalAuthorName":"聂磊"},{"authorName":"汤克勇","id":"fdadbf21-754f-461e-a517-d097885e7256","originalAuthorName":"汤克勇"}],"doi":"","fpage":"59","id":"9aaddb4e-90d2-48b6-9bef-fc2ddf411a91","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"0d0861e0-8f6f-4203-b156-9d84738074ca","keyword":"杂化复合膜","originalKeyword":"杂化复合膜"},{"id":"16bc39b5-1500-45fc-827d-5dfa60f6ea37","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"e4734ac0-96b7-46b5-895e-fe8735bb7325","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"f99b6e91-e7ed-4b90-940e-dc515c9d3312","keyword":"胶原水解物","originalKeyword":"胶原水解物"},{"id":"ef3e665a-6de9-475f-b78c-8b110526ca45","keyword":"溶胀速率","originalKeyword":"溶胀速率"}],"language":"zh","publisherId":"fhclxb201102010","title":"SiO2/胶原水解物-聚乙烯醇杂化复合膜的制备与性能","volume":"28","year":"2011"},{"abstractinfo":"以异丙醇铝为主要原料,采用醇盐水解结合水热处理的合成方法,制备出了高纯度、高结晶度、易分散的勃姆石型纳米氢氧化铝材料.实验结果表明,醇铝水解后生成拟薄水铝石,然后在水热条件下转变为勃姆石;升高水解温度和水热温度,延长水热时间有利于提高勃姆石型氢氧化铝的结晶度.","authors":[{"authorName":"江琦","id":"f8c6987f-a8f1-4349-b85f-ce096735331d","originalAuthorName":"江琦"},{"authorName":"雷蕾","id":"c23c245f-c3de-43b5-8297-30eaa82701cc","originalAuthorName":"雷蕾"}],"doi":"","fpage":"23","id":"2ad5efb0-a475-4487-89e4-78e6d3807276","issue":"z3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f61baa0c-6101-4bd6-9f75-c5112e4769eb","keyword":"异丙醇铝","originalKeyword":"异丙醇铝"},{"id":"1d1415e9-93f1-4dfe-9df3-202aaf655061","keyword":"水解-水热法","originalKeyword":"水解-水热法"},{"id":"82e31d62-3e76-4a88-b109-329a3c5abea8","keyword":"氢氧化铝","originalKeyword":"氢氧化铝"}],"language":"zh","publisherId":"cldb2008z3008","title":"醇盐水解-水热法制备高结晶度纳米氢氧化铝","volume":"22","year":"2008"},{"abstractinfo":"利用静电纺丝制备出纳米羟基磷灰石(nHA)/玉米醇溶蛋白(zein)复合超细纤维。通过场发射扫描电镜、透射电镜观察了纳米羟基磷灰石/玉米醇溶蛋白复合超细纤维的形貌;利用红外光谱仪、X射线衍射仪对纳米羟基磷灰石/玉米醇溶蛋白复合超细纤维结构和性能进行表征,并进行了拉伸测试。结果表明,随着超细纤维中羟基磷灰石含量的增加,纤维的直径先减小后增大,纤维中纳米羟基磷灰石的结晶逐渐变好。相比于玉米醇溶蛋白超细纤维,含有质量分数为25%羟基磷灰石的复合超细纤维仍具有较好的力学性能。","authors":[{"authorName":"张红萍","id":"920e2650-f859-4e4a-aa19-ba963faee0ea","originalAuthorName":"张红萍"},{"authorName":"熊杰","id":"1f59bd9d-9459-40ef-ab27-ef1b0e82d989","originalAuthorName":"熊杰"},{"authorName":"李妮","id":"2d0292f1-54b8-49f4-9b1f-d8b3e464f98a","originalAuthorName":"李妮"},{"authorName":"肖红伟","id":"677c4aa6-0956-4833-81a1-7966d949fd71","originalAuthorName":"肖红伟"},{"authorName":"谢军军","id":"d5b1e96a-2c6b-4334-a088-1356d10cdb76","originalAuthorName":"谢军军"}],"doi":"","fpage":"150","id":"1dec3755-72cc-4dcf-b5d4-80978d6ee213","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"3e80582b-e841-4f07-a2db-ee4492c51bc5","keyword":"纳米羟基磷灰石","originalKeyword":"纳米羟基磷灰石"},{"id":"75426ece-9613-4cf2-ad4b-ab1b2a0dc238","keyword":"玉米醇溶蛋白","originalKeyword":"玉米醇溶蛋白"},{"id":"d3298a50-373a-4af4-9738-feb51411f64c","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"478da5b2-a0ae-487f-85a1-15161fa82a86","keyword":"复合超细纤维","originalKeyword":"复合超细纤维"}],"language":"zh","publisherId":"gfzclkxygc201109043","title":"纳米羟基磷灰石/玉米醇溶蛋白复合超细纤维的制备与性能","volume":"27","year":"2011"},{"abstractinfo":"用3,3',4,4'-二苯醚四羧酸二酐(ODPA)和4,4'-二氨基二苯甲烷(MDA)为单体合成聚酰亚胺(PI)膜,测定了PI膜在单组分溶剂(甲醇、乙醇、异丙醇、叔丁醇、水)和质量分数88%双组分溶液(甲醇/水、乙醇/水、异丙醇/水、叔丁醇/水)中的溶胀特性,并考察了不同醇浓度对PI膜溶胀特性的影响.实验结果表明,PI膜在不同醇/水溶液体系中的溶胀度顺序为甲醇>乙醇>异丙醇>叔丁醇.PI膜的溶胀度(SR)和溶解选择因子(as)均随着溶液中醇的质量分数增加呈现先增加后减小的趋势,并且膜从优先溶醇转化为优先溶水.","authors":[{"authorName":"杨丽彬","id":"ea52c923-4b89-4b10-beb8-181a27b2a184","originalAuthorName":"杨丽彬"},{"authorName":"孙本惠","id":"abc7faad-74e2-4df5-b057-5dbd29ddfdca","originalAuthorName":"孙本惠"},{"authorName":"徐叶新","id":"423ccd57-e4c9-481d-92f5-dc899d392a0b","originalAuthorName":"徐叶新"},{"authorName":"陈翠仙","id":"2b03a612-2335-49d9-a665-cfc0173da36a","originalAuthorName":"陈翠仙"},{"authorName":"李继定","id":"7ecdad9d-1da4-4180-bbcc-5d0bff881e24","originalAuthorName":"李继定"}],"doi":"10.3969/j.issn.1007-8924.2008.02.009","fpage":"44","id":"7e290a41-7ef4-4571-adbd-cc99590e2931","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"3b199b02-f1d8-4afe-b6b4-858e8739615f","keyword":"渗透汽化","originalKeyword":"渗透汽化"},{"id":"2b99110e-a965-4008-a63c-3dd615eb1c09","keyword":"膜","originalKeyword":"膜"},{"id":"e3ceb902-da49-4acc-97c9-4f25e5c70278","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"9bfc045b-6854-41f7-a4d4-2eed9ce9022d","keyword":"溶胀","originalKeyword":"溶胀"}],"language":"zh","publisherId":"mkxyjs200802009","title":"聚酰亚胺膜在不同醇/水体系中的溶胀特性","volume":"28","year":"2008"},{"abstractinfo":"为了开发利用玉米淀粉加工残余物(玉米醇溶蛋白)及制备环境友好刨花板,研究了二氯甲烷、玉米醇溶蛋白、制胶时搅拌温度等因素对基于玉米醇溶蛋白胶粘剂的木刨花板力学性能的影响.结果表明,当溶剂中二氰甲烷的体积百分含量在10%~50%范围内增加时,刨花板的静曲强度、弹性模量、抗拉强度及内结合强度等力学性能均呈现先增加后下降的趋势,当二氯甲烷含量为20%时,刨花板的各项力学性能达到最佳;当玉米醇溶蛋白的百分含量在20%~40%范围内增加时,刨花板的各项力学性能也均呈现先增加后下降的趋势,当玉米醇溶蛋白含量为30%时,刨花板的各项力学性能达到最佳;当制胶温度在25℃~65℃范围内增加时,刨花板的各项力学性能均呈现下降趋势,当温度为25℃时,刨花板的各项力学性能最佳.实验室测得玉米醇溶蛋白胶粘剂制备的刨花板力学性能值达到国家标准(GB 4897-2003).","authors":[{"authorName":"常蕊","id":"c73df51c-3c6f-436b-82a9-fea44aed2c08","originalAuthorName":"常蕊"},{"authorName":"盛奎川","id":"aeb9c93a-83a3-4cea-9193-33eb7fe2208c","originalAuthorName":"盛奎川"},{"authorName":"王海","id":"baa011b0-f97b-463a-830e-82b0f259bbe2","originalAuthorName":"王海"},{"authorName":"崔翔","id":"876389b4-61e4-44a6-ba35-16615f17b95e","originalAuthorName":"崔翔"},{"authorName":"沈莹莹","id":"f69998ba-8f1d-46df-af93-07a9a06328e6","originalAuthorName":"沈莹莹"}],"doi":"","fpage":"437","id":"9625b618-6624-461f-a015-1dd76b15e8f6","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"34e98fd6-6cdf-4210-8c2c-7734225e7ba0","keyword":"生物质材料","originalKeyword":"生物质材料"},{"id":"b0945495-3422-46d0-a624-d2c68d49e154","keyword":"玉米醇溶蛋白","originalKeyword":"玉米醇溶蛋白"},{"id":"2ac2135f-e281-4730-b72d-522d753b0a7a","keyword":"胶粘剂","originalKeyword":"胶粘剂"},{"id":"002a2f34-4354-41dc-9b19-e36d27fb9fc9","keyword":"刨花板","originalKeyword":"刨花板"},{"id":"afbe8095-c187-4178-87cb-7220b487c946","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clkxygc200903028","title":"基于玉米醇溶蛋白胶粘剂的刨花板力学性能","volume":"27","year":"2009"},{"abstractinfo":"为了改善玉米醇溶蛋白在复合材料加工中的流变特性,研究了辐照剂量、温度、剪切速率对玉米醇溶蛋白流变性的影响.结果表明,玉米醇溶蛋白经辐照处理后具有假塑性流体特性,呈现\"剪切变稀\"现象.辐照剂量、剪切温度和剪切速率对玉米醇溶蛋白的流变性有显著影响.随着辐照剂量增加,溶液黏度呈现先增加后减小的趋势,当辐照剂量为10kGy时,黏度最高;随着剪切温度的增加,溶液黏度呈现先下降后增加的趋势,当温度为308K时,黏度最低;随剪切速率的增加,溶液的黏度降低,但当剪切速率接近100s-1时,黏度变化不明显.","authors":[{"authorName":"陈洁","id":"42e951fe-1925-4d32-821c-0388dc12b298","originalAuthorName":"陈洁"},{"authorName":"盛奎川","id":"8955d14c-9934-404a-aab1-5cce68f8860b","originalAuthorName":"盛奎川"},{"authorName":"常蕊","id":"7eb21860-60a7-47ea-8210-539437dd8537","originalAuthorName":"常蕊"},{"authorName":"王会","id":"cedadd2f-6891-459e-a68f-1f8d00d45fba","originalAuthorName":"王会"},{"authorName":"沈莹莹","id":"896a28bd-4c68-4c45-a1e7-f386e3c9b568","originalAuthorName":"沈莹莹"}],"doi":"","fpage":"263","id":"55da2126-8de2-469c-abf1-9873894c07ec","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"93756cc4-ccfa-4582-b45a-4fa03d539b63","keyword":"生物质材料","originalKeyword":"生物质材料"},{"id":"1e4986cc-4856-45ff-9015-377fc84f13c0","keyword":"玉米醇溶蛋白","originalKeyword":"玉米醇溶蛋白"},{"id":"8583ff2a-d0fd-4589-9484-35eee27b6eb3","keyword":"辐照","originalKeyword":"辐照"},{"id":"3c754ab9-a99e-46f4-90c9-edcb0fb83103","keyword":"流变特性","originalKeyword":"流变特性"}],"language":"zh","publisherId":"clkxygc201102022","title":"辐照处理对玉米醇溶蛋白流变性的影响","volume":"29","year":"2011"},{"abstractinfo":"采用小麦醇溶蛋白的乙醇/水(70/30(v/v))溶液制备了醇溶蛋白膜,分析了交联剂用量与pH值对膜的拉伸性能、吸水性及透湿性的影响.结果表明,适度交联的醇溶蛋白膜具有最大拉伸强度与较高的断裂伸长率.随交联剂用量增加,膜的吸水率稍有下降,而透湿性显著增大.酸碱处理能显著提高膜的拉伸强度,但使吸水性稍有增大.","authors":[{"authorName":"孙少敏","id":"6b461a18-1a3b-457a-8f4e-4f21fdaa6ebe","originalAuthorName":"孙少敏"},{"authorName":"宋义虎","id":"b38b7fef-6196-40d4-8ad7-4a4a79395f9a","originalAuthorName":"宋义虎"},{"authorName":"张其斌","id":"7555deec-1047-40c6-a9c6-bf6be0598aa9","originalAuthorName":"张其斌"},{"authorName":"郑强","id":"c3a4bf73-4b8e-42f9-9a59-fd8ac229bc41","originalAuthorName":"郑强"}],"doi":"","fpage":"1094","id":"58137874-58e1-4e1a-9620-5d85594f9020","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c5ff8678-1fb4-422d-b728-ec43c8513d65","keyword":"醇溶蛋白","originalKeyword":"醇溶蛋白"},{"id":"a40027ff-eabf-4111-8175-68fd90fbc3c4","keyword":"拉伸性能","originalKeyword":"拉伸性能"},{"id":"1fa52d6b-62b4-4565-be77-fa1380e4b817","keyword":"吸湿率","originalKeyword":"吸湿率"},{"id":"83ed3c3c-ea24-4dd8-9fc3-d7654f056805","keyword":"透湿率","originalKeyword":"透湿率"}],"language":"zh","publisherId":"gncl200607025","title":"小麦醇溶蛋白膜力学性能与吸湿性研究","volume":"37","year":"2006"},{"abstractinfo":"以无水三氯化铝和四氯化钛为前驱体,以无水醇为氧供体通过非水解溶胶-凝胶法制备钛酸铝凝胶.应用TGDTA、xRD和FT-IR等测试手段研究了凝胶热处理过程中的相变化以及非水解溶胶-凝胶的反应过程.结果表明:无水乙醇和无水异丙醇作氧供体制备的凝胶可在750℃直接合成钛酸铝,并且用无水乙醇作氧供体合成钛酸铝的效果优于无水异丙醇.反应过程中形成了大量的异质聚合产物Al-O-Ti,表明钛酸铝凝胶转化过程中发生了非水解反应,这也是低温合成钛酸铝的关键所在.","authors":[{"authorName":"江伟辉","id":"9b5ff252-a500-463a-bfe1-416ce6c8092f","originalAuthorName":"江伟辉"},{"authorName":"魏恒勇","id":"71a942b8-707d-4381-9350-559171592fee","originalAuthorName":"魏恒勇"},{"authorName":"于云","id":"d1d18126-5cd2-4ed7-a503-86012aa21b06","originalAuthorName":"于云"}],"doi":"","fpage":"134","id":"a8ddb01a-5f07-4285-a1fc-21c669d5b9f7","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f025f3d2-4585-4a4f-8180-d45d42cacf8b","keyword":"非水解溶胶-凝胶法","originalKeyword":"非水解溶胶-凝胶法"},{"id":"2321d37e-6a23-4e73-bb53-9ceb0ca916ad","keyword":"氧供体","originalKeyword":"氧供体"},{"id":"37f18092-cbf6-4926-94c1-b4028f1c3019","keyword":"醇","originalKeyword":"醇"},{"id":"da65c9f4-4966-46d1-8b6e-9578e0b97fd5","keyword":"钛酸铝","originalKeyword":"钛酸铝"}],"language":"zh","publisherId":"cldb200702035","title":"以醇作氧供体的非水解溶胶-凝胶法制备钛酸铝凝胶的研究","volume":"21","year":"2007"}],"totalpage":1246,"totalrecord":12451}