{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"简要地总结了大气离子与自由基反应的研究进展和以氯苯为目标产物的气相离子-分子反应的质谱研究.根据大气层状结构图、高层大气的特点以及相关的研究结果,提出了氯苯类污染物的形成不排除是大气化学反应尤其是离子反应产物的观点.对进一步研究大气中氯苯类污染物的生成机制和控制具有重要意义.","authors":[{"authorName":"曹洁","id":"98f983b8-6200-4100-a187-962b466bb30e","originalAuthorName":"曹洁"},{"authorName":"崔义","id":"5bf60dfa-8b32-4338-91b9-82fa7c92ab4a","originalAuthorName":"崔义"},{"authorName":"刘淑莹","id":"5067331e-1f9e-4718-ad75-cd9bccecb358","originalAuthorName":"刘淑莹"}],"doi":"10.3724/SP.J.1095.2010.90383","fpage":"249","id":"0e291376-b871-43b1-bf4c-b00129bc74a5","issue":"3","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"5c1b4896-c588-4206-9921-d4b058491818","keyword":"氯苯类污染物","originalKeyword":"氯苯类污染物"},{"id":"576dfcc7-99ef-44a5-b5e1-bcdd4aa7e26b","keyword":"质谱技术","originalKeyword":"质谱技术"},{"id":"9b8e21e9-ebec-4cc4-af7f-2357f4522fe4","keyword":"离子-分子反应","originalKeyword":"离子-分子反应"}],"language":"zh","publisherId":"yyhx201003001","title":"氯苯类污染物在高层大气环境中形成的可能性","volume":"27","year":"2010"},{"abstractinfo":"超分子凝胶中的光化学反应是比较特殊的一类反应,通常是将具有光响应活性的基团或分子引入到超分子凝胶的自组装体系中,因此,能够将超分子凝胶独特的性质与光化学反应的优势有效地结合起来,构筑新型的光功能材料,这使得此类超分子凝胶在光信息存储、光开关及光转换器件等前沿领域具有广阔的应用前景.本文主要总结近年来国内外包括作者课题组对超分子凝胶中光化学反应方面的研究进展,以及其在多重响应凝胶、手性光学开关以及手性合成方面的应用.","authors":[{"authorName":"王秀凤","id":"e3f1f182-0e37-4fbd-9a8f-c454b7bc33ef","originalAuthorName":"王秀凤"},{"authorName":"杨东","id":"aa989d84-2775-49df-b556-72ece3cec7ef","originalAuthorName":"杨东"},{"authorName":"刘鸣华","id":"e551447d-4dbb-43a0-8d22-226b74a9a307","originalAuthorName":"刘鸣华"}],"doi":"10.7517/j.issn.1674-0475.2015.01.049","fpage":"49","id":"1f44ea4e-d526-4a61-84a6-5cdc67eff7cf","issue":"1","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"7fce9b5f-a46b-4efa-8d28-e3f1a4dabf77","keyword":"超分子凝胶","originalKeyword":"超分子凝胶"},{"id":"cf921bee-cf67-4069-a598-f89cc195607a","keyword":"光化学反应","originalKeyword":"光化学反应"},{"id":"500a32b9-f6cf-4deb-93af-21e6ed7fad6f","keyword":"光致变色","originalKeyword":"光致变色"},{"id":"b2aa6603-5294-4bf6-8643-4bec6d4b1e1c","keyword":"光致聚合","originalKeyword":"光致聚合"},{"id":"aa9363ee-d40d-497e-b5ff-5f1627eeab4d","keyword":"超分子手性","originalKeyword":"超分子手性"},{"id":"34f5571d-0d92-458e-898c-6e9e71f0cc3c","keyword":"自组装","originalKeyword":"自组装"}],"language":"zh","publisherId":"ggkxyghx201501005","title":"超分子凝胶中的光化学反应","volume":"33","year":"2015"},{"abstractinfo":"基于CUO分子(X3A″)的多体展式分析势能函数, 用准经典的Monte-Carlo轨迹法研究了U+CO(0, 0)的分子反应动力学过程. 结果表明: 在碰撞能低(<215 kJ/mol)时可以生成长寿命络合物CUO(X3A″), 并且该络合反应是无阈能反应; 碰撞能大于418.4 kJ/mol后, 先后出现置换产物UO和UC; 随着碰撞能进一步增大, CUO分子将被完全碰散成U, C和O原子, 而且反应U+CO(0, 0)→UO+C, U+CO(0, 0)→UC+O和 U+CO(0, 0)→U+O+C是有阈能反应. ","authors":[{"authorName":"薛卫东","id":"853505df-d8da-4e13-81b1-e27999919ffe","originalAuthorName":"薛卫东"},{"authorName":"朱正和","id":"4757a8ef-f923-4c00-943d-09524c48751d","originalAuthorName":"朱正和"},{"authorName":"王红艳","id":"7727d677-4eb4-4005-9904-e19a6c568349","originalAuthorName":"王红艳"},{"authorName":"邹乐西","id":"e1ead284-7b7a-40f2-9b17-a6d90ffed844","originalAuthorName":"邹乐西"}],"doi":"10.3969/j.issn.1007-4627.2002.z1.020","fpage":"62","id":"6548fc54-7476-46aa-b79a-4b09ee30b6f8","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"ab965fca-1d2a-4911-819d-4637d349be83","keyword":"势能函数","originalKeyword":"势能函数"},{"id":"4f6a3561-8c7f-4cf6-9163-9175be494503","keyword":"反应截面","originalKeyword":"反应截面"},{"id":"c3a36cf0-cb32-44eb-bc93-286081aac777","keyword":"轨线","originalKeyword":"轨线"},{"id":"77762e07-5435-4b4e-ab7a-6054129c3d5d","keyword":"碰撞","originalKeyword":"碰撞"}],"language":"zh","publisherId":"yzhwlpl2002z1020","title":"铀与CO反应分子动力学研究","volume":"19","year":"2002"},{"abstractinfo":"一个原子与宁一个同核双原子分子反应碰撞的过渡态构型是线型的, 计算了平衡临界键长的统计分布函数及其平均值、反应活化能和反应速率常数, 理论结果与实验值相符. ","authors":[{"authorName":"丁世良","id":"b56fbe86-a2a9-4c21-b707-19eafd7e7ef3","originalAuthorName":"丁世良"},{"authorName":"孔涛","id":"41cdabb0-85bc-4b23-bc31-10fa26ab6c78","originalAuthorName":"孔涛"},{"authorName":"董顺乐","id":"41b46324-81fd-4679-aead-31d161c34e63","originalAuthorName":"董顺乐"}],"doi":"10.3969/j.issn.1007-4627.2002.z1.010","fpage":"29","id":"f9a452fc-3628-4ed5-86dc-a0f626069274","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"86288b2f-2d1d-4e04-ba26-f5fa697658ce","keyword":"过渡态","originalKeyword":"过渡态"},{"id":"d8bccb5e-2b86-41c0-871f-b75d7aec5445","keyword":"统计平均","originalKeyword":"统计平均"},{"id":"a91ed405-3558-48f2-8d45-39d6b54c936c","keyword":"临界键长","originalKeyword":"临界键长"}],"language":"zh","publisherId":"yzhwlpl2002z1010","title":"原子与双原子分子的碰撞反应","volume":"19","year":"2002"},{"abstractinfo":"最近,美国纽约大学布法罗分校化学家合成出一种能捕获纳米离子的微小分子笼,可用于提纯纳米材料。分子笼由微小的有机分子管道组成。这种名为“瓶刷分子”的有机分子内部用特殊方法做成中空,并使其内壁带上负电荷以选择性地吞掉那些带正电的粒子。分子笼还能做成不同大小,以捕捉不同大小的分子猎物。","authors":[],"doi":"","fpage":"51","id":"29f1997a-a840-40f5-af33-6fe5eb5446ef","issue":"12","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"d21c2cb0-b889-45b1-a88b-535bfe37f600","keyword":"纳米离子","originalKeyword":"纳米离子"},{"id":"ef91d6ae-188b-4c5a-be74-dfc9157b02d7","keyword":"小分子","originalKeyword":"小分子"},{"id":"c31e3988-13fb-41e1-bb5c-53bbeb80e05f","keyword":"捕获","originalKeyword":"捕获"},{"id":"e1f2b1f6-e3d7-44a3-a9cb-bc9d9aae9f18","keyword":"合成","originalKeyword":"合成"},{"id":"f25a141e-82b4-4cef-8496-3ac378993e6d","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"a91e0a15-bc60-4f06-b709-451998ea947f","keyword":"有机分子","originalKeyword":"有机分子"},{"id":"084d5a21-6c01-4184-8138-2dbe41021f04","keyword":"化学家","originalKeyword":"化学家"},{"id":"38c9323d-1ff1-4d8f-a34c-8d6704fe9ea6","keyword":"分子内","originalKeyword":"分子内"}],"language":"zh","publisherId":"zgcljz201112016","title":"美合成出捕获纳米离子分子笼","volume":"30","year":"2011"},{"abstractinfo":"基于重质油在酸性Y分子筛催化剂上的反应,区分了负氢离子转移反应和氢转移反应,认为负氢离子转移和氢转移是重质油催化反应过程中的两个不同过程. 确定了大庆减压蜡油在酸性Y分子筛催化剂上反应时,负氢离子转移反应主要发生在反应前期(转化率为5%~10%)至反应中后期(转化率为60%~70%)的转化深度区间,而氢转移反应主要发生在反应后期(转化率>60%~70%). 负氢离子转移反应基本不产生焦炭,焦炭主要通过氢转移反应产生. Y分子筛上发生的主要是汽油烯烃和环烷烃之间的氢转移反应.","authors":[{"authorName":"龚剑洪","id":"93bab04f-39bd-4def-9f0d-899f366a4e2f","originalAuthorName":"龚剑洪"},{"authorName":"龙军","id":"7587d467-3857-434f-a067-a44403f6e3ee","originalAuthorName":"龙军"},{"authorName":"许友好","id":"cc4078d9-83f6-4bff-96f4-fd2df953f490","originalAuthorName":"许友好"}],"doi":"","fpage":"67","id":"94a888e4-89ff-4718-bac5-3a677259f852","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"2dcfb78e-ccd7-4992-bc45-793898c606bc","keyword":"蜡油","originalKeyword":"蜡油"},{"id":"abe64bff-fe4e-4ec2-a6a9-1024ad73f78c","keyword":"催化裂化","originalKeyword":"催化裂化"},{"id":"b4caf86c-b28f-4875-bc32-67c6681d1a50","keyword":"负氢离子转移","originalKeyword":"负氢离子转移"},{"id":"0a211821-e2ea-4461-8273-cdffdcee862c","keyword":"氢转移","originalKeyword":"氢转移"}],"language":"zh","publisherId":"cuihuaxb200701014","title":"催化裂化过程中负氢离子转移反应和氢转移反应的不同特征","volume":"28","year":"2007"},{"abstractinfo":"传统观点认为酶促反应并不会影响酶本身的扩散运动。最近的研究表明,在酶促反应过程中,酶分子的扩散系数会增大,而且其增大强度具有底物依赖性,即随着底物浓度的增加而增大。酶促反应分子马达,是利用酶促反应过程中产生的能量驱动纳米或微米级物体的运动。尽管在几种不同的酶体系中的研究已经证实了酶在催化过程中的底物依赖性,但是造成酶扩散增强的原因至今仍不清楚。本文从酶促反应过程中酶自身扩散系数的变化、酶自身扩散系数变化的可能机理及其应用等3个方面,对酶在催化过程中的底物依赖性以及酶促分子马达的研究进展进行了综述。","authors":[{"authorName":"秦为为","id":"9f9f1911-8732-4746-b440-106b5ef1f01d","originalAuthorName":"秦为为"},{"authorName":"孙乐乐","id":"1156772d-42c3-42ca-adda-84419df20c1a","originalAuthorName":"孙乐乐"},{"authorName":"彭天欢","id":"465ce757-b0ea-4cb6-a5ac-3a4ebeb1e42a","originalAuthorName":"彭天欢"},{"authorName":"徐艳","id":"6d32dd7b-fc43-479e-9d70-8ee80cda4dab","originalAuthorName":"徐艳"},{"authorName":"高延静","id":"b61bfef0-b538-4200-aa0c-cad09eb991cd","originalAuthorName":"高延静"},{"authorName":"王文锋","id":"c3c46cd3-8058-4b39-9368-160ce4b177ee","originalAuthorName":"王文锋"},{"authorName":"李迪","id":"d6b045fd-f910-46cb-b839-10403a8f75f6","originalAuthorName":"李迪"}],"categoryName":"评述与进展","doi":"10.11895/j.issn.0253-3820.160202","fpage":"1133","id":"9a8f044a-79d2-47e2-b08c-5aed0c43413d","issue":"7","journal":{"abbrevTitle":"FXHX","coverImgSrc":"journal/img/cover/FXHX.jpg","id":"23","issnPpub":"1872-2040","publisherId":"FXHX","title":"分析化学"},"keywords":[{"id":"42cb9f81-c0f2-4101-8994-9754afc3a777","keyword":"酶促反应","originalKeyword":"酶促反应"},{"id":"d3892c0e-3817-40f0-82fd-a6ebb7631c40","keyword":"扩散系数","originalKeyword":"扩散系数"},{"id":"e8d0ca53-5f6a-4c91-9d20-3aa8687a3454","keyword":"趋化性","originalKeyword":"趋化性"},{"id":"7cf5debb-7ca1-4e08-a248-7502e6e38db4","keyword":"自驱动","originalKeyword":"自驱动"},{"id":"67bd2022-8aea-49b5-9259-bf166351ca5f","keyword":"纳米马达","originalKeyword":"纳米马达"},{"id":"398b6745-e758-4b37-b752-85db6a6c5b15","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"fxhx-44-7-1133","title":"酶促反应分子马达的研究进展","volume":"44","year":"2016"},{"abstractinfo":"采用离子交换法,分别在微波加热和常规加热的条件下,制备了La/β分子筛催化剂,并采用红外光谱、扫描电子显微镜、 X射线衍射与能量色散谱进行了表征. 考察了不同加热条件下所得的改性β分子筛上La的负载量,La在分子筛表面的分散度以及催化剂对乙醇-水-异丁烯体系水合醚化复合反应的催化性能,并分析了反应机理. 与传统加热法相比,微波加热法制得的催化剂上La离子的一次交换度和负载量高,且交换时间大大缩短. La离子的引入使得β分子筛上乙醇与水的转化率提高了10%~20%,而且随着La负载量的增加,催化剂的活性呈明显的上升趋势. 反应机理的分析表明,上述水合醚化反应主要发生在β分子筛的表面上,B酸位桥接 Al - OH - Si 酸性点可能是主要的反应活性点,并且反应过程经历碳正离子中间体的形成步骤.","authors":[{"authorName":"杨伯伦","id":"6bc16a19-48cd-4be6-a2c5-575baeee18c7","originalAuthorName":"杨伯伦"},{"authorName":"路士庆","id":"df7f7eb8-1aa8-453f-a6a2-64eaa90ada6d","originalAuthorName":"路士庆"},{"authorName":"吴江","id":"8390a420-5867-401f-bb55-6800c3b90561","originalAuthorName":"吴江"},{"authorName":"王华军","id":"40cf2e4d-0e22-4769-945f-75c002c1d90e","originalAuthorName":"王华军"}],"doi":"","fpage":"73","id":"ac938941-b7f7-4b9a-a417-3869d9c973d4","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"652e5326-0f2c-4b9c-9bcf-56bdf4059a40","keyword":"β分子筛","originalKeyword":"β分子筛"},{"id":"7c7a64dd-dd83-4e66-af55-e647bc868382","keyword":"镧","originalKeyword":"镧"},{"id":"3bdb0bf2-9da1-4c47-9e44-257ceb340fc3","keyword":"异丁烯","originalKeyword":"异丁烯"},{"id":"631e5f05-ebf4-4a59-acd2-3dae6b51fcd0","keyword":"乙醇","originalKeyword":"乙醇"},{"id":"c73ca99e-6a27-4bbd-a641-05bfac1309d6","keyword":"水","originalKeyword":"水"},{"id":"b0ebce45-9551-4604-9ce4-3c3c1a8a27e1","keyword":"水合醚化","originalKeyword":"水合醚化"},{"id":"c8a5b08d-12ff-4dd7-93c9-df6e2d5d2418","keyword":"微波加热","originalKeyword":"微波加热"}],"language":"zh","publisherId":"cuihuaxb200701015","title":"镧改性β分子筛上的异丁烯水合醚化复合反应","volume":"28","year":"2007"},{"abstractinfo":"在高硅/铝比的酸性沸石分子筛HY上实现了Knoevenagel缩合反应. Brnsted酸和Lewis酸均可催化Knoevenagel缩合反应. 考察了羰基化合物和活泼亚甲基化合物的反应活性顺序. 结果表明,羰基化合物的羰基极化程度越高,反应越容易进行; 不同于碱催化时的Knoevenagel缩合反应,活泼亚甲基化合物的活泼氢的酸性并不是影响其反应活性的重要因素.","authors":[{"authorName":"左伯军","id":"ddb509cf-98b7-4f8e-84be-307480970ba2","originalAuthorName":"左伯军"},{"authorName":"王琪珑","id":"e6834b6a-ccdb-4f7d-be6f-db2b999f5236","originalAuthorName":"王琪珑"},{"authorName":"王远","id":"303f05e0-5b3d-4de4-89e0-d2072b8fa94c","originalAuthorName":"王远"},{"authorName":"马玉道","id":"24cd9f9a-43f6-4913-9c14-6bad340d7535","originalAuthorName":"马玉道"}],"doi":"","fpage":"555","id":"bb9f358e-119c-4591-a4b2-0ca2e7bd077b","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"e83888f3-9483-4511-aaae-253705a7c42c","keyword":"酸性沸石分子筛","originalKeyword":"酸性沸石分子筛"},{"id":"1fa0d1d4-4099-4c69-ae6a-e9b23683ac9c","keyword":"醛","originalKeyword":"醛"},{"id":"8efa775c-e6bb-446a-920a-c0c3a08068fc","keyword":"酮","originalKeyword":"酮"},{"id":"0970afbb-faf7-4d16-8e4d-4607839a7302","keyword":"亚甲基化合物","originalKeyword":"亚甲基化合物"},{"id":"9ed8ab74-17a7-4669-ab23-553df3058c58","keyword":"Knoevenagel缩合反应","originalKeyword":"Knoevenagel缩合反应"}],"language":"zh","publisherId":"cuihuaxb200206018","title":"酸性沸石分子筛催化Knoevenagel缩合反应","volume":"23","year":"2002"},{"abstractinfo":"在60℃及2 MPa条件下,以PdCl2-CuCl2为催化剂,分别在无溶剂、酸性水溶液、1-丁基-3-甲基咪唑六氟磷酸盐(bmimPF6)离子液体为溶剂研究了分子氧氧化1-庚烯生成2-庚酮的Wacker反应.结果表明,在无溶剂、酸性水溶液、bmimPF6溶剂中,均可以得到目标产物2-庚酮,反应6 h后转化率均可达90%以上.在离子液体bmimPF6中,2-庚酮的选择性高于无溶剂和酸性水溶液中的结果.分别在酸性水溶液、bmimPF6溶剂中进行催化剂重复使用实验,研究不同溶剂中催化剂的稳定性.结果显示,在离子液体bmimPF6中催化剂的活性更加稳定,表明可以用离子液体取代传统的有毒、易挥发溶剂进行Wacker反应.","authors":[{"authorName":"王凯","id":"df017c42-d028-45e4-903e-8204b79b6bfe","originalAuthorName":"王凯"},{"authorName":"张代军","id":"32f758d7-7aad-40b9-9991-6a3f2dec56aa","originalAuthorName":"张代军"},{"authorName":"王鹏","id":"685fbdbf-bb3e-4bf5-8a2a-69ecf431194c","originalAuthorName":"王鹏"},{"authorName":"林森","id":"6b71884b-229e-41fa-bcd7-bf0d333ab40d","originalAuthorName":"林森"},{"authorName":"周晋","id":"c545fa1c-7551-442a-b13a-7f6e086dbdb3","originalAuthorName":"周晋"},{"authorName":"孙宏建","id":"a0b69cd3-07e9-4a2a-956d-6628a9417aa5","originalAuthorName":"孙宏建"}],"doi":"10.3969/j.issn.1000-0518.2007.04.007","fpage":"392","id":"bfdff15a-c48b-4bdc-b54b-cc627d46fd2c","issue":"4","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"cd48b285-339d-45d3-83ef-b60d04a68bed","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"ae7fe5fc-679c-4c13-ada0-3ac1df400216","keyword":"Wacker反应","originalKeyword":"Wacker反应"},{"id":"84eae149-b0c7-4333-9113-a60e4445685c","keyword":"庚烯","originalKeyword":"庚烯"},{"id":"c8369ab8-c8bd-4850-b177-e577f12dd924","keyword":"庚酮","originalKeyword":"庚酮"},{"id":"f097d49e-6764-4e51-b6b1-ada26a17d718","keyword":"钯","originalKeyword":"钯"}],"language":"zh","publisherId":"yyhx200704007","title":"离子液体在Wacker反应中的应用","volume":"24","year":"2007"}],"totalpage":5288,"totalrecord":52879}