{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了环境降解高分子的研究现状、种类,介绍了光降解、生物降解、光/生物降解塑料,指出完全生物降解塑料在此领域中占有重要的地位,是目前研究的重点.并简单介绍了复合材料技术、纳米技术在生物降解高分子材料中的应用.","authors":[{"authorName":"焦剑","id":"17737e00-e6dd-4570-9044-114f63cb5e4e","originalAuthorName":"焦剑"},{"authorName":"吴耀国","id":"54e09108-91ed-4e50-8b3c-2b95a9cfee5b","originalAuthorName":"吴耀国"}],"doi":"","fpage":"29","id":"5b28c5e7-9021-4041-bb37-39b5a6e690ea","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0e90f038-8c79-42eb-ba03-b90301ab54e5","keyword":"环境降解","originalKeyword":"环境降解"},{"id":"143ddc64-53bb-4d72-99f8-68929e04806c","keyword":"高分子材料","originalKeyword":"高分子材料"},{"id":"f9a29e6d-b4c3-417f-a00f-bc4f17241f74","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"0025a638-b041-4bc0-9e60-a7d030d2461d","keyword":"纳米微粒","originalKeyword":"纳米微粒"}],"language":"zh","publisherId":"cldb200408009","title":"环境降解高分子材料","volume":"18","year":"2004"},{"abstractinfo":"为了研究光老化对涂层/钢板界面附着力的影响,利用室外(拉萨、武汉)大气曝晒试验与室内人工老化加速试验装置对丙烯酸聚氨酯涂层钢板进行了老化试验.采用拉拔法和电化学交流阻抗技术(EIS)分别评价了老化前后涂层/钢板界面的干附着力和湿附着力性能.拉拔法测试结果表明,涂层的干附着力随老化时间延长而减小.基于EIS电化学参数得到了与其相似的结果,即失粘面积随老化时间增加而增大.同时发现在相同试验周期内荧光紫外老化加速试验比氙灯加速老化试验所产生的涂层失粘面积更大,这与在紫外辐射较强地区(拉萨)和较弱平原地区(武汉)曝晒后所得结果具有很好的对应性,表明增大紫外辐照强度会促进涂层湿附着力降低.研究证实,光老化使涂层附着力减小,从而加速涂层下钢板腐蚀的发生和发展.","authors":[{"authorName":"卢琳","id":"892a8216-caba-4982-b2dc-1366a93ad476","originalAuthorName":"卢琳"},{"authorName":"胡建文","id":"2843d846-d8f0-4a70-83a7-bc739556f027","originalAuthorName":"胡建文"},{"authorName":"李晓刚","id":"f00240ff-f007-44c8-a224-d304493cdfec","originalAuthorName":"李晓刚"},{"authorName":"高瑾","id":"199f63ad-9317-408e-b2be-afce6263d01d","originalAuthorName":"高瑾"}],"doi":"","fpage":"94","id":"dfafcc7a-7ad3-415c-aedb-242a96d30920","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"50b8bb1d-3486-4841-9b18-d613375adfa3","keyword":"环境降解","originalKeyword":"环境降解"},{"id":"0f2ab4fe-2fbb-4c29-8ea9-5bc4052ffc8b","keyword":"涂层","originalKeyword":"涂层"},{"id":"4d4faf90-0928-4a30-a890-50854c4ecc69","keyword":"附着力","originalKeyword":"附着力"},{"id":"993c585d-1fb9-4feb-9773-ccfb338bb3fb","keyword":"界面","originalKeyword":"界面"},{"id":"b237781f-83f0-43f8-ad3d-84e69edf1142","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fhclxb201102016","title":"光老化对丙烯酸聚氨酯/钢板界面附着力的影响","volume":"28","year":"2011"},{"abstractinfo":"以环境降解地膜为材料,地面覆盖为对照,采用水中浸泡、水面漂浮的处理方式,研究了环境降解地膜在水环境中的降解特性。研究结果表明,水中浸泡、水面漂浮及地面覆盖的环境降解地膜断裂伸长率保留率随处理时间延长均呈现先上升后下降的趋势,处理时间分别为70、50及40d 时,断裂伸长率保留率小于10%。DSC测试显示,环境降解地膜各处理熔融峰值变化不大,稳定在121℃左右,但熔融焓呈现上升趋势。暴露60d后,水中浸泡、水面漂浮及地面覆盖的样品熔融焓由未浸泡时的118.2J/g 分别上升至125.9、130.8和133.4J/g;结晶度从未浸泡时的40.33%分别变化为43.59%、44.63%和45.51%。扫描电镜测试结果显示环境降解地膜原样表面平整、光滑,没有裂纹和孔洞,浸泡在水中、漂浮于水面及地面覆盖60d后分别出现孔洞、裂纹及明显的脱落痕迹。","authors":[{"authorName":"赵斌斌","id":"7e8c4a48-1e80-484c-a7b7-3aade7d9bd43","originalAuthorName":"赵斌斌"},{"authorName":"罗学刚","id":"838a375a-1554-4a75-8797-01a71e4e0674","originalAuthorName":"罗学刚"},{"authorName":"林晓艳","id":"1af59aec-7351-4765-a676-9582d6bf1f42","originalAuthorName":"林晓艳"}],"doi":"10.3969/j.issn.1001-9731.2013.22.016","fpage":"3283","id":"07fe5357-8857-4764-b75f-9557d556e964","issue":"22","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"38581432-1d26-4ef1-abbe-9f8bd1a781d3","keyword":"环境降解地膜","originalKeyword":"环境降解地膜"},{"id":"383e38c2-76fe-495f-9b77-8ac0cd45c623","keyword":"水环境","originalKeyword":"水环境"},{"id":"f5e749df-6dea-495a-a7e6-89078bc7f820","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"47636b93-9444-4866-84ae-f2e8627f4818","keyword":"DSC","originalKeyword":"DSC"},{"id":"34aff68b-023b-40bd-9532-8d21f323a7af","keyword":"SEM","originalKeyword":"SEM"}],"language":"zh","publisherId":"gncl201322016","title":"环境降解地膜在水环境中的降解特性研究","volume":"","year":"2013"},{"abstractinfo":"在低密度聚乙烯中添加热敏剂NiCoMnO4、NTC制备热降解地膜,通过断裂伸长率保留率、热分析、红外光谱测试,研究了热敏剂对聚乙烯地膜降解特性的影响.研究结果表明,地膜在NiCoMnO4、NTC添加量为0.5% ~0.6%,温度为40℃~50℃时降解效果较好,断裂伸长率保留率分别在处理42 d和60 d后降低到10%以下.红外分析表明,2种地膜在处理过程中主要发生了氧化降解反应,在1717 cm-1范围羰基区出现吸收峰,并随时间的延长和温度的升高越来越强.差示扫描量热分析发现,NiCoMnO4、NTC地膜的结晶度在处理60 d后分别增加2.9% ~6.45%和0.89% ~3.48%,意味着地膜的热降解主要发生在分子链间距较大的非晶区.","authors":[{"authorName":"张楠","id":"58d873b5-4559-489f-8ce9-64a173f9ef42","originalAuthorName":"张楠"},{"authorName":"罗学刚","id":"9251edc4-bcb8-4cf1-86cd-03860b004663","originalAuthorName":"罗学刚"},{"authorName":"李保强","id":"8f02e9fe-3399-4572-94d1-8a687ab0e4bb","originalAuthorName":"李保强"},{"authorName":"李梓番","id":"bc8b6439-a088-4c67-ab4d-43f412214f24","originalAuthorName":"李梓番"}],"doi":"","fpage":"89","id":"9a26c08d-4ee1-439c-978f-7f1aba832ed1","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a89867c8-7d77-415f-8f33-bd4c6fb45245","keyword":"降解地膜","originalKeyword":"降解地膜"},{"id":"a840550a-832d-4266-9624-813e8a257e55","keyword":"热降解","originalKeyword":"热降解"},{"id":"85fb42e1-4b64-49a9-8567-2ab33a85bf3e","keyword":"断裂伸长率保留率","originalKeyword":"断裂伸长率保留率"},{"id":"81bf71ec-f83a-46c8-bb64-e23dedb38eed","keyword":"差示扫描量热法","originalKeyword":"差示扫描量热法"},{"id":"f3b38d01-2a5c-4c98-b6c8-2ecb177c930c","keyword":"红外光谱","originalKeyword":"红外光谱"}],"language":"zh","publisherId":"gfzclkxygc201410020","title":"环境降解地膜的热降解特性探究","volume":"30","year":"2014"},{"abstractinfo":"在介绍尤降解塑料和生物破坏性塑料之后,着重综述了降解塑料尤其是全生物降解塑料的研完和开发现状,指出当前降解塑料发展所面临的问题和对策,并对生物降解塑料的发展前景和发展趋势进行了讨沦。","authors":[],"doi":"","fpage":"40","id":"b889a573-77d4-4422-8474-fe1cc937be62","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"66a50840-16fb-4350-ae9e-1c310175cfa6","keyword":"降解塑料 光降解塑料 生物降解塑料 淀粉 聚酯 降解Resarch and Development on Degradable PlasticsHuang Farong (School of Materials Science & Engineering ,East China University of Science & Technology ,Shanghai 200237)","originalKeyword":"降解塑料 光降解塑料 生物降解塑料 淀粉 聚酯 降解Resarch and Development on Degradable PlasticsHuang Farong (School of Materials Science & Engineering ,East China University of Science & Technology ,Shanghai 200237)"}],"language":"zh","publisherId":"cldb200007013","title":"环境降解塑料的研究开发","volume":"14","year":"2000"},{"abstractinfo":"研究了地下水环境条件下(低温、避光、特征离子共存等),金霉素在二氧化锰和铁锰复合氧化物上的降解行为.探讨了降解动力学以及pH条件、离子种类和强度等环境因素对降解的影响,并通过降解反应前后材料的变化,初步探索其降解机理.一级动力学方程能较好地拟合降解过程,铁锰复合氧化物的降解速率常数高于二氧化锰;外源阳离子K+、Na+、Ca2+、Mg2+对降解无显著影响,但阴离子HCO3-对降解有明显抑制.采用红外光谱对降解前后材料进行表征,发现二氧化锰上的Mn—OH和铁锰复合氧化物上的Fe—OH、Mn—O和Fe—O—Mn振动吸收峰在降解后明显减弱,表明这些可能为降解金霉素的活性位点,降解后材料能谱图上N、Cl元素的存在也同样证明金霉素在材料表面发生了氧化反应.","authors":[{"authorName":"童蕾","id":"57b8975b-e123-41f2-8a4b-64f6b288e48c","originalAuthorName":"童蕾"},{"authorName":"曾梦玲","id":"6cc9c9c2-8ba0-4345-b46e-bf689f385dec","originalAuthorName":"曾梦玲"},{"authorName":"李民敬","id":"500bbc74-2a98-4309-9139-81cd420124fb","originalAuthorName":"李民敬"},{"authorName":"刘慧","id":"58b136e3-1449-44ed-ac37-0a34e75d48c2","originalAuthorName":"刘慧"}],"doi":"10.7524/j.issn.0254-6108.2016.05.2015120102","fpage":"917","id":"4f57ef34-01b7-4e17-a0b8-324eb476958e","issue":"5","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"0c544374-4442-495f-ab9d-44c28790cb27","keyword":"金霉素","originalKeyword":"金霉素"},{"id":"63706932-4530-4c60-9d06-230b737f9578","keyword":"铁锰氧化物","originalKeyword":"铁锰氧化物"},{"id":"11e6f389-5b4c-425f-bf9c-d3d807c3f6e4","keyword":"降解","originalKeyword":"降解"},{"id":"7b1b3051-b201-45d6-bd3a-8aed1703979f","keyword":"地下水环境","originalKeyword":"地下水环境"},{"id":"de214069-b2ac-4460-92a1-18d231bed9d0","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"hjhx201605010","title":"铁锰氧化物对地下水环境中金霉素的降解","volume":"35","year":"2016"},{"abstractinfo":"介绍了淀粉的基本性质,阐述了两类淀粉基环境可生物降解高分子材料的研究开发和发展现状,讨论了其制备原理、方法和存在的问题,并指出了发展方向.","authors":[{"authorName":"王云芳","id":"0b039cc3-1f71-46a8-a118-6c2cfad8b1b1","originalAuthorName":"王云芳"},{"authorName":"王汝敏","id":"f5afff27-8863-488f-93df-793ce3b53c5c","originalAuthorName":"王汝敏"},{"authorName":"赵瑾","id":"13db05c1-3856-44e7-a889-ee80abe05152","originalAuthorName":"赵瑾"},{"authorName":"郭增昌","id":"8de8ae3e-47fe-4d9a-9847-321ef8f42635","originalAuthorName":"郭增昌"}],"doi":"","fpage":"12","id":"5a922f6c-8ddc-4e55-9ccb-88dd25ea90f8","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d6afa91a-9cff-4480-83a5-74d60157d670","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"e4d25bec-0be6-409b-a2a3-fab8a7c40028","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"2ff3521c-23f1-4936-9678-d79c5fc80ef6","keyword":"淀粉塑料","originalKeyword":"淀粉塑料"},{"id":"0b6e7eda-2375-48ee-a8cf-250734f6e84a","keyword":"填充型淀粉塑料","originalKeyword":"填充型淀粉塑料"},{"id":"9708bc4d-2493-4303-988d-cdc9f7e035dd","keyword":"全淀粉塑料","originalKeyword":"全淀粉塑料"}],"language":"zh","publisherId":"cldb200504004","title":"淀粉基环境降解高分子材料研究进展","volume":"19","year":"2005"},{"abstractinfo":"为研究不同环境中秸秆/大豆分离蛋白(SPI)改性脲醛树脂复合材料花盆的降解性能,采用土壤掩埋(SB)和户外曝露(OE)2种方式对试样进行降解处理,通过力学性能、质量损失和吸水性测试,热重-红外联用(TG-FTIR),SEM和EDS能谱对花盆的结构和性能进行了研究.结果显示:与对照组(US)相比,经SB和OE降解处理12个月后,花盆的抗拉强度分别下降了36.51%和19.92%,抗拉弹性模量分别下降了9.38%和3.92%,断裂伸长率分别减少了41.36%和36.61%,质量损失率分别为13.74%和4.69%,且试样吸水性均增强.TG-FTIR联用分析表明:降解处理后花盆的热解脱气条件变得温和,最大热解峰延后.SEM扫描观察发现:SB处理后花盆表面腐蚀度及形貌变化大于OE处理后的,两者表面C和N含量均显著下降,表明秸秆/SPI改性脲醛树脂复合材料花盆经SB和OE处理后均发生不同程度降解,SB处理后花盆的降解速率高于OE处理后的.","authors":[{"authorName":"孙恩惠","id":"ec43eacf-0e52-4ae0-93a0-1d311eb2a6d8","originalAuthorName":"孙恩惠"},{"authorName":"黄红英","id":"2f646f96-5302-4129-bdcf-74f992a847b4","originalAuthorName":"黄红英"},{"authorName":"武国峰","id":"78898408-2550-4a56-afc8-5f467ca5ab27","originalAuthorName":"武国峰"},{"authorName":"常志州","id":"5396df87-5dd5-4247-9f85-98d59bb51a82","originalAuthorName":"常志州"}],"doi":"","fpage":"1198","id":"658cab9d-4943-4d69-839a-3c14de9d62f5","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"18c4f211-aa95-438b-8ed9-f2fb11e0124d","keyword":"秸秆","originalKeyword":"秸秆"},{"id":"c120d3b9-a540-487a-9023-b42b94304920","keyword":"改性脲醛树脂","originalKeyword":"改性脲醛树脂"},{"id":"0db7e2ac-4eef-4f69-a805-b83deefa7aa1","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"010d9057-121c-4e39-a097-5393ea24d849","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"5ef79d89-ccf9-41fc-867b-531f3a9a6751","keyword":"土壤掩埋","originalKeyword":"土壤掩埋"},{"id":"9b8872c4-8df1-4ae0-8240-a344eb50cde9","keyword":"户外曝露","originalKeyword":"户外曝露"}],"language":"zh","publisherId":"fhclxb201405012","title":"不同环境中秸秆/SPI改性脲醛树脂复合材料花盆降解行为","volume":"31","year":"2014"},{"abstractinfo":"甲酰氨基嘧磺隆是一种新型磺酰脲类除草剂,其在环境中的归趋备受关注.采用室内模拟试验方法,研究了甲酰氨基嘧磺隆在不同土壤中的降解性、水解和光解特性.结果表明,甲酰氨基嘧磺隆在光照强度4000 lx,紫外强度25μW·cm-2的人工光源氙灯条件下,甲酰氨基嘧磺隆的光解半衰期为1.72 h,易光解.25℃时,pH4、pH7和pH9条件下水解半衰期分别为4.17、91.2、97.6 d,50℃时的水解半衰期分别为<1 d、4.75 d和14.5 d,温度和pH值对水解速率具有较大影响.甲酰氨基嘧磺隆在江西红壤、太湖水稻土和东北黑土中的降解半衰期分别为10.8、16.6、31.5 d,该药在酸性土壤中降解较快,影响其在土壤中降解速率的主要因素为土壤pH值.","authors":[{"authorName":"吴文铸","id":"b3b1fcb5-2ef1-44d5-bfce-b8782587ce8c","originalAuthorName":"吴文铸"},{"authorName":"孔德洋","id":"c08c09d3-d748-4dfc-92dd-7831389e065b","originalAuthorName":"孔德洋"},{"authorName":"何健","id":"ba5f3a49-d9d7-4362-aed0-907c685ff2d3","originalAuthorName":"何健"},{"authorName":"孔祥吉","id":"bebe6f03-6dc2-4588-b88c-c1bef4fa8b75","originalAuthorName":"孔祥吉"},{"authorName":"单正军","id":"040b4c8a-9458-4ca1-88e0-431e38fb900a","originalAuthorName":"单正军"}],"doi":"10.7524/j.issn.0254?6108.2016.03.2015100802","fpage":"439","id":"f93adc9c-2d61-4c1c-b317-8807f068e035","issue":"3","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"ac5b3faa-572a-4727-9491-eb656d513e66","keyword":"甲酰氨基嘧磺隆","originalKeyword":"甲酰氨基嘧磺隆"},{"id":"7a2dce1b-e77c-42e6-82b3-3f443a855e8d","keyword":"光解","originalKeyword":"光解"},{"id":"4741e48b-4ace-4c13-993f-459bdfc78d47","keyword":"水解","originalKeyword":"水解"},{"id":"8c39eaf8-d778-44b0-a7f9-52d5dc1ecfbc","keyword":"土壤降解","originalKeyword":"土壤降解"}],"language":"zh","publisherId":"hjhx201603003","title":"甲酰氨基嘧磺隆在模拟环境中的降解特性","volume":"35","year":"2016"},{"abstractinfo":"采用生理盐水浸泡与肌肉埋植的方法分别研究了可降解纤维/磷酸钙复合骨水泥的体外力学性能、体内降解性能以及相组成、微结构随浸泡(或植入)时间的变化规律.浸泡结果表明:浸泡初期,纤维的加入一定程度上降低了复合骨水泥的抗压强度,但大大改善了其断裂韧性,而且抗弯强度略有增加;浸泡后期,复合骨水泥的抗压强度、抗弯强度、断裂功均明显下降.体内降解结果表明,随着植入时间延长,含纤维复合骨水泥的降解速率及其增加幅度均高于未掺纤维骨水泥.类生理环境下含纤维复合骨水泥力学性能、降解性能的变化与纤维的降解、材料微观结构的变化密切相关.","authors":[{"authorName":"郭大刚","id":"a7e1e080-265a-4359-9371-fb7e790aafa6","originalAuthorName":"郭大刚"},{"authorName":"徐可为","id":"4a029874-9331-4a0a-a1b6-f41f05acd88f","originalAuthorName":"徐可为"},{"authorName":"憨勇","id":"847596c7-7041-410f-8998-982c7f82d1d2","originalAuthorName":"憨勇"}],"doi":"","fpage":"82","id":"7cc015e6-073b-4bc5-a2f3-ed5aa0c7fa04","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"7df48009-3732-414d-b843-8432dcc45f0e","keyword":"磷酸钙骨水泥","originalKeyword":"磷酸钙骨水泥"},{"id":"13c2753d-669b-4a6c-848f-86ae1f8f2207","keyword":"可降解纤维","originalKeyword":"可降解纤维"},{"id":"29e3a785-71e9-47b7-9a0a-a3543a13da5a","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"ab512340-7ef6-4341-96fc-f6017cf1b2f3","keyword":"结构","originalKeyword":"结构"},{"id":"77d86060-c53d-486f-9417-2c60c1de7260","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"fhclxb200806016","title":"类生理环境下可降解纤维/磷酸钙复合骨水泥的性能与结构变化","volume":"25","year":"2008"}],"totalpage":1343,"totalrecord":13425}