{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"将向心透平膨胀机喷咀入口至叶轮后扩压管出口模拟为单喷管,通过理论分析,推导出向心透平稳态全工况特性通用模型框架.基于实测数据,应用广义最小二乘法,获得通流特性和效率特性二个模型.用该模型预测其它两台透平膨胀机的特性,结果表明:模型实用范围和精度都较好.因此,在设计向心透平时,它可作为典型特性模型,为全工况优化设计提供依据.","authors":[{"authorName":"郭新生","id":"649d93a6-e40e-4456-add3-1b56e3454374","originalAuthorName":"郭新生"},{"authorName":"谢立军","id":"909c4130-8a29-46e6-bd5c-bdb41511b4dc","originalAuthorName":"谢立军"},{"authorName":"郭中纬","id":"780200e1-d9e8-43bc-afeb-fc2a5c08576a","originalAuthorName":"郭中纬"}],"doi":"","fpage":"547","id":"91950a61-8627-4a14-9baa-d92e379c80fd","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a80dece8-b01f-4d87-8846-d9a62584c0ab","keyword":"向心透平膨胀机","originalKeyword":"向心透平膨胀机"},{"id":"0f14ed2b-f552-4a74-8698-16187b5778b9","keyword":"全工况特性","originalKeyword":"全工况特性"},{"id":"1f64f151-1e26-4524-883b-a40fa87418e6","keyword":"通用模型","originalKeyword":"通用模型"},{"id":"6e123fc5-b1b8-429c-8a9f-064e08873162","keyword":"性能预测","originalKeyword":"性能预测"}],"language":"zh","publisherId":"gcrwlxb200205005","title":"向心透平稳态全工况性能预测及其实验研究","volume":"23","year":"2002"},{"abstractinfo":"基于气体轴承、滚动轴承支撑下的某航空用空气透平膨胀机,进行不同转速下热力性能和机械性能的试验研究,给出了两种支承下的热力性能及机械性能对比试验结果,验证了气体轴承润滑在高转速运行的条件下的优越性.研究结果表明:抑制低频振动、提高工作转速,有利于提高增压透平膨胀机的制冷效果、机械效率.","authors":[{"authorName":"赵晨","id":"42a3c08d-c1a3-4d40-8ad7-bc4fbc83e95e","originalAuthorName":"赵晨"},{"authorName":"杨金福","id":"85faed95-7edd-445e-8b89-934145b49789","originalAuthorName":"杨金福"},{"authorName":"韩东江","id":"37473fbe-de55-472a-94f1-eb7826bc58ad","originalAuthorName":"韩东江"},{"authorName":"陈昌婷","id":"f4ca043c-260b-476a-80e2-e4ecbbf4fecb","originalAuthorName":"陈昌婷"},{"authorName":"齐伟军","id":"dc0183ed-9b1d-4810-9a8b-e0de39a7132a","originalAuthorName":"齐伟军"}],"doi":"","fpage":"1199","id":"39371156-36f7-44ed-8f49-871a1b65afa2","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"235faecb-944e-46e9-ba6f-b57a661a61b5","keyword":"增压透平膨胀机","originalKeyword":"增压透平膨胀机"},{"id":"b492012c-2f90-4e78-be84-755c7b45d348","keyword":"气体轴承","originalKeyword":"气体轴承"},{"id":"7d13371a-7fd9-4346-b714-5d94623a28a4","keyword":"滚动轴承","originalKeyword":"滚动轴承"},{"id":"6bd7f00b-c6e3-44cc-b94e-c6990638eca1","keyword":"高转速","originalKeyword":"高转速"}],"language":"zh","publisherId":"gcrwlxb201307001","title":"增压透平膨胀制冷转速性能试验研究","volume":"34","year":"2013"},{"abstractinfo":"本文采用NURBS曲线参数化表达和控制几何型线,结合CFD数值实验,对膨胀比为8的有机工质向心透平进行气动优化研究.跨声速喷嘴叶型型线经气动优化后,喷嘴内处于顺压梯度的加速流动状态,喉部跨声速膨胀流动得到改善,流场最大Ma降低,全工况下的叶栅总压损失系数显著减小,跨声速工况下的级组效率明显提高.叶轮子午流道型线经优化后,流道宽度变化更均匀平滑,原动叶轮吸力面分离被消除,透平级组效率也有提高.","authors":[{"authorName":"李艳","id":"09d56068-1451-4617-a7f7-585e88237665","originalAuthorName":"李艳"},{"authorName":"顾春伟","id":"6d4fc60a-5186-4a33-baba-c1ed7a4b6594","originalAuthorName":"顾春伟"}],"doi":"","fpage":"1239","id":"f86d3d0f-7f9c-4865-9a28-c3662b3afdc5","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8fd2d616-c285-4a63-94f8-6855216ff69c","keyword":"有机工质向心透平","originalKeyword":"有机工质向心透平"},{"id":"b1921696-f4a7-40ae-acea-12090f6c18da","keyword":"气动优化","originalKeyword":"气动优化"},{"id":"61fdddf0-4a49-4f1c-b4c8-363fd9794880","keyword":"非均匀有理B样条","originalKeyword":"非均匀有理B样条"},{"id":"53177cdf-62e5-4757-8a9c-21ccf0e35ef9","keyword":"跨声速喷嘴","originalKeyword":"跨声速喷嘴"},{"id":"4546c516-3bb8-4eab-afb0-5b8816c52f8e","keyword":"子午流道型线","originalKeyword":"子午流道型线"}],"language":"zh","publisherId":"gcrwlxb201307010","title":"高膨胀比有机工质向心透平气动优化研究","volume":"34","year":"2013"},{"abstractinfo":"对向心透平叶轮内部复杂流动在级环境下进行了全三维黏性数值模拟,结合拓扑学原理分析了设计工况和非设计工况下其内流动分离及各种涡系发展的演变过程,初步建立了向心透平叶轮内的旋涡模型,阐述了流动损失的形成机理。研究表明:向心透平叶轮内部涡系与轴流式透平存在较大差别,且流动分离及涡系主要集中在吸力面侧;设计工况下向心透平叶轮内的主要旋涡包括马蹄涡、通道涡及泄漏涡,其主要表现为通道涡与泄漏涡相互影响和掺混,是主要损失的形成原因;非设计工况下,主流在叶轮叶片前缘处发生大范围的分离及回流,造成了较大的能量损失,但二次流损失所占比例较小。","authors":[{"authorName":"李怀志","id":"e6ede01f-ef9b-4052-85fe-6f75a946450d","originalAuthorName":"李怀志"},{"authorName":"邓清华","id":"75dc9387-6e59-4663-94f8-f5211bf3abb0","originalAuthorName":"邓清华"},{"authorName":"付雷","id":"629569cd-231c-4af9-bebf-65cdc446970b","originalAuthorName":"付雷"},{"authorName":"任平","id":"405958e9-c018-40d4-b34a-4487456c8228","originalAuthorName":"任平"},{"authorName":"丰镇平","id":"c49701f3-8eff-4547-ae21-cc65c951d4d5","originalAuthorName":"丰镇平"}],"doi":"","fpage":"945","id":"d285a112-fee7-48c3-a75d-0f1cfe3edbe1","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"415b2943-5c7b-490c-81da-d487c5a516dc","keyword":"向心透平","originalKeyword":"向心透平"},{"id":"08bc99a3-5ebe-4bdf-b30c-a38814036816","keyword":"微型燃气轮机","originalKeyword":"微型燃气轮机"},{"id":"37dcc2b5-74c2-466a-9968-41e4ee32c7d9","keyword":"流动分离","originalKeyword":"流动分离"},{"id":"94e39de4-e3b4-43d0-97b5-966ad97b5789","keyword":"旋涡结构","originalKeyword":"旋涡结构"}],"language":"zh","publisherId":"gcrwlxb201206010","title":"向心透平级叶轮内三维复杂流动的数值研究","volume":"33","year":"2012"},{"abstractinfo":"对微型燃向心透平叶轮顶部间隙流动在级环境下进行了全三维粘性数值模拟.研究结果表明:顶部间隙小于2%时,间隙每增加1%,级效率降低1.5%,而级通流能力有所降低;径向与轴向间隙变化对级性能影响有很大差别,径向间隙增加对级效率降低的影响是轴向间隙增加的8.3倍,径向间隙增加使通流能力增强的程度是轴向间隙增加使通流能力减弱的4.2倍.此外,将间隙流场与文献报道试验结果进行了比较,差别主要在工作轮顶部区域.","authors":[{"authorName":"邓清华","id":"871a9f0b-93be-46e9-bb2a-69a3d3baa5cf","originalAuthorName":"邓清华"},{"authorName":"牛久芳","id":"644b4571-9866-4606-921f-10da20b342c7","originalAuthorName":"牛久芳"},{"authorName":"丰镇平","id":"e7a00214-769a-4cac-a25a-c8472cb1a5da","originalAuthorName":"丰镇平"}],"doi":"","fpage":"408","id":"ad086264-c8bd-4d3a-baa2-a6211fea8cb0","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f816fec0-fed8-4025-81f4-55c5d4c243b6","keyword":"微型燃气轮机","originalKeyword":"微型燃气轮机"},{"id":"628ddc77-9f77-4fa8-bb4e-5cd26a89df20","keyword":"向心透平","originalKeyword":"向心透平"},{"id":"3d593c42-ef45-4488-9c9e-b24cc979ece0","keyword":"叶轮","originalKeyword":"叶轮"},{"id":"077d00ca-d4b7-49c6-8855-5802bc1167a7","keyword":"顶部间隙","originalKeyword":"顶部间隙"},{"id":"3256122e-188e-4abd-bba0-c8d8cea4e034","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200603015","title":"叶轮顶部间隙对向心透平总体性能影响的研究","volume":"27","year":"2006"},{"abstractinfo":"本文按实际气体计算有机工质蒸气物性,编写有机工质向心透平气动设计和变工况性能预测程序,对以R123为工质的向心透平进行气动设计优化、变工况性能预测计算.通过数值实验模拟分析三维流动情况和整机性能,结果显示透平设计和性能预测结果有效、可靠,但气动设计对强激波引起的损失及气流偏转估计不足,需要改进气动设计和性能预测方法,优化叶型.","authors":[{"authorName":"李艳","id":"9dc94cc1-be9f-4c13-b86e-1bcbf448e87b","originalAuthorName":"李艳"},{"authorName":"李海波","id":"fb6a414f-a6f7-474a-8524-213e6b969b01","originalAuthorName":"李海波"},{"authorName":"顾春伟","id":"a0e45b19-2a10-423b-95ed-1902baf6bab3","originalAuthorName":"顾春伟"}],"doi":"","fpage":"63","id":"99e095db-2ee5-409d-bf6c-b92d75ee9404","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"62292467-a630-4bec-93ce-443f853c52e4","keyword":"向心透平","originalKeyword":"向心透平"},{"id":"a3e303a6-8a33-479f-bd72-fbe87fa627bb","keyword":"有机工质","originalKeyword":"有机工质"},{"id":"206adebc-fa98-4d15-af83-345ac3af9a60","keyword":"气动布局优化","originalKeyword":"气动布局优化"},{"id":"4d0385db-eca2-4264-91dc-f7f84b606854","keyword":"变工况性能预测","originalKeyword":"变工况性能预测"},{"id":"a4ef60e2-a4db-48a1-983c-701d0474725b","keyword":"有朗肯循环","originalKeyword":"有机朗肯循环"}],"language":"zh","publisherId":"gcrwlxb201301015","title":"有机工质向心透平气动设计与变工况性能预测","volume":"34","year":"2013"},{"abstractinfo":"本文针对太阳能热发电过程中蒸汽流量小、焓降高的特点设计了一种部分进汽的向心式蒸汽透平。所设计的蒸汽透平在流量仅为2.33 kg/s、压比为3.36的工况下仍有较高的效率。通过三维数值模拟的方法分析了导叶和叶轮内部流动特性,探讨了部分进汽对通道流通能力及总效率的影响。","authors":[{"authorName":"白宗良","id":"415de1d3-50f9-4c34-a5bb-44f20a295684","originalAuthorName":"白宗良"},{"authorName":"王开","id":"2f4bec8c-6741-458b-9db8-7c73d9748c60","originalAuthorName":"王开"},{"authorName":"林峰","id":"3a1e85ba-4078-4270-871c-c5da8e752a81","originalAuthorName":"林峰"},{"authorName":"聂超群","id":"16e32cd7-5713-4284-8cef-9b5876b3eea1","originalAuthorName":"聂超群"}],"doi":"","fpage":"937","id":"3abfe2ef-94a7-46b2-a371-d3b0c6ab49e5","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"0a52ed6e-9aac-4664-b20a-c51fa7e88a9c","keyword":"向心透平","originalKeyword":"向心透平"},{"id":"4cc92948-54b2-4d78-b9fc-058bae3b647a","keyword":"部分进汽","originalKeyword":"部分进汽"},{"id":"c5a4df65-1442-45dd-9001-47132a28baad","keyword":"气动设计","originalKeyword":"气动设计"},{"id":"86017fe2-b371-43b6-84a8-c0319c4a37fb","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201206008","title":"某向心式蒸汽透平的气动设计与数值研究","volume":"33","year":"2012"},{"abstractinfo":"本文基于三维N-S方程组,采用结构化网格,用数值方法模拟了一台75 kW微型燃气轮机中涡轮级内的流动.湍流模型采用Baldwin-Lomax模型,计算方法基于Jameson格式.结果表明:静叶流道在吸力面一侧,沿子午流线的前25%区域气流快速膨胀,而压力面在60%以后逐渐膨胀.一定的气流入口角能有效控制导叶内横向二次流动,并使得气流出口角更加均匀,其出口气流的落后角也有明显的减小.在叶轮流道内部的损失区主要集中在吸力面一侧,叶顶间隙的泄漏流动使得吸力面与叶顶间的角隅区的损失有明显加大,控制叶轮的径向间隙对控制流动损失有明显作用.","authors":[{"authorName":"刘红政","id":"8774bd46-db9c-40d6-9fcd-4232d0736974","originalAuthorName":"刘红政"},{"authorName":"戴韧","id":"ffb85673-5751-459a-93a8-b73f945f7b74","originalAuthorName":"戴韧"},{"authorName":"陈康民","id":"3ac3bf4d-0e5b-4a82-9341-2f90ff534f27","originalAuthorName":"陈康民"}],"doi":"","fpage":"752","id":"b24f9d61-a1e7-4cbc-b94d-19fe58dbeaf4","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a51719e7-0dea-4c53-8a1d-aba7a2f435ea","keyword":"向心透平","originalKeyword":"向心透平"},{"id":"d84d9f21-2e07-46f1-8161-6d6931fc18b1","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"67d97194-fee6-4f65-9a42-aa5f45495eb3","keyword":"叶顶间隙","originalKeyword":"叶顶间隙"},{"id":"6e25d53d-a671-44dd-9418-82f94e00d77c","keyword":"二次流动","originalKeyword":"二次流动"}],"language":"zh","publisherId":"gcrwlxb200405009","title":"向心透平级内流动的数值研究","volume":"25","year":"2004"},{"abstractinfo":"对一台单级高负荷向心透平进行了三维黏性定常和非定常计算,计算得到的动叶出口以及下游的周向平均流场与文献提供的实验结果符合良好。在此基础上对流动的非定常特性进行了分析,发现由于动叶转速较高,且动叶下游不存在下一级静叶的干涉,流动的非定常效应主要体现在叶片排之间的区域以及动叶通道进口,动叶出口以及下游流动的非定常特性并不明显。非定常计算结果透平的级效率随时间的波动幅度达到了1.3%。","authors":[{"authorName":"马灿","id":"0a2d1a8f-7cde-4917-91f4-d7394be65146","originalAuthorName":"马灿"},{"authorName":"袁新","id":"0c37ab70-5dd1-4067-bdd7-bb5786040b5b","originalAuthorName":"袁新"}],"doi":"","fpage":"757","id":"dfdfd6cd-e9a4-4983-aabb-f0faf9b5044f","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"534ef279-b97d-497d-93b0-256698b2b41f","keyword":"向心透平","originalKeyword":"向心透平"},{"id":"bddaee8e-8572-44bd-a29e-63274bf21f63","keyword":"非定常计算","originalKeyword":"非定常计算"},{"id":"eff649d7-ba5c-4696-b99d-e1b0c8292810","keyword":"损失","originalKeyword":"损失"}],"language":"zh","publisherId":"gcrwlxb201205008","title":"单级高负荷向心透平三维黏性非定常计算","volume":"33","year":"2012"},{"abstractinfo":"本文对可用于工业低温余热回收的有朗肯循环(ORC)热力系统进行简述,采用热力学第一定律、热力学第二定律分析ORC热力系统及其效率,并对有机工质动力透平的特点及设计造型进行概述.最后采用F11,R123,R245ca,R600和R600a为工质,设计有朗肯系统回收某一工业余热,并以R123为工质进行有机工质透平的气动设计、造型设计和CFD模拟计算研究,并对透平进行造型优化.研究表明,以R123为工质的有朗肯循环系统能有效可靠利用该工业余热,所设计的有机工质透平基本达到设计要求,透平造型的优化设计能有效改善透平叶轮内部流动.","authors":[{"authorName":"李艳","id":"6a6dc494-d05e-4620-9993-8846ccff1d6b","originalAuthorName":"李艳"},{"authorName":"连红奎","id":"a5deb71c-9fe0-4662-90ed-dafe12f3b43e","originalAuthorName":"连红奎"},{"authorName":"顾春伟","id":"ac4f723f-3962-48e1-a0e4-3282f9a08118","originalAuthorName":"顾春伟"}],"doi":"","fpage":"2014","id":"4f61db2a-5104-469b-b8fa-e813c223bc4b","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"939fe770-b608-40f3-84c5-7eacd28591ef","keyword":"有朗肯循环","originalKeyword":"有机朗肯循环"},{"id":"670a7b42-9439-4276-ba5b-9d15fc9a9d43","keyword":"热力循环分析","originalKeyword":"热力循环分析"},{"id":"57095b18-7dc0-44cf-bdbe-aa6d46f02a91","keyword":"有机工质透平","originalKeyword":"有机工质透平"},{"id":"152b193a-b516-40c9-a65e-4df86ebf8c9e","keyword":"低温余热回收","originalKeyword":"低温余热回收"}],"language":"zh","publisherId":"gcrwlxb201012009","title":"有朗肯循环系统及其透平设计研究","volume":"31","year":"2010"}],"totalpage":1701,"totalrecord":17009}